

Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2654100.

27/12/2023

The Director, The Ministry of Environment and Forest & Climate Change, Integrated Regional Office, 1st Floor, Additional Office Block for GPOA, Shastri Bhawan, Haddows Road, Nungambakkam, Chennai – 600 006.

Sir,

Sub: Submission of six monthly Environmental Clearance Compliance statement for December 2023 (for the period from April 2023 to September 2023) for "M/s Solara Active Pharma Science Limited – Change in product mix without increase in total production capacity" at R.S. Nos. 30/4pt, 32/1A, 32/2, 32/3, 33/1, 33/10, 33/11, 33/13, 33/2, 33/3, 33/4,33/5, 33/6, 33/9, 34/1, 34/2, 34/3, 34/4, 34/5, 34/6, 34/7, 34/8, 35/4, 35/5, 35/6, 35/7, 36/5, Periyakalapet, Mathur Road, Puducherry.

Ref: EC vide F.No 247066/SEIAA/PY/EE/2022 dated: 27.04.2022.

We submit herewith the six monthly Environmental Clearance Compliance statement for "M/s Solara Active Pharma Science Limited – Change in product mix without increase in total production capacity" at R.S. Nos. 30/4pt, 32/1A, 32/2, 32/3, 33/1, 33/10, 33/11, 33/13, 33/2, 33/3, 33/4,33/5, 33/6, 33/9, 34/1, 34/2, 34/3, 34/4, 34/5, 34/6, 34/7, 34/8, 35/4, 35/5, 35/6, 35/7, 36/5, Periyakalapet, Mathur Road, Puducherry for December 2023 (for the period from April 2023 September 2023) along with the supporting documents for your perusal.

Thanking you

Yours faithfully,

mech. 12 Authorized Signatory oharma Sc Puduchern 605 014 rivakala

SIX-MONTHLY ENVIRONMENTAL CLEARANCE COMPLIANCE REPORT

For (Period of April 2023 – September 2023)

"Change in product mix without increase in total production capacity"

EC OBTAINED Vide F.No 247066/SEIAA/PY/EE/2022 dated: 27.04.2022

At

R.S. Nos. 30/4pt, 32/1A, 32/2, 32/3, 33/1, 33/10, 33/11, 33/13, 33/2, 33/3, 33/4,

33/5, 33/6, 33/9, 34/1, 34/2, 34/3, 34/4, 34/5, 34/6, 34/7, 34/8, 35/4, 35/5, 35/6,

35/7, 36/5, Periyakalapet, Mathur Road, Puducherry.

Submitted By

M/s Solara Active Pharma Science Limited Periyakalapet, Mathur Road, Puducherry.

ENVIRONMENTAL CONSULTANT HUBERT ENVIRO CARE SYSTEMS (P) LTD CHENNAI

December 2023

Table of Contents

1.	Proj	Project details.	
2.	Loca	ntion map	6
3.	Site	photograph	7
4.	Six	month environmental clearance statement	8
5.	Env	Environmental clearance six monthly reports	
	5.1	Ambient air quality monitoring	23
	5.2 Ambient noise level monitoring		23
	5.3 Ground water quality monitoring		23
	5.5 Stack emission monitoring		23
6.	Con	Conclusion	

List of Annexure

Annexure No	Content
1.	ЕС Сору
2.	CTO and CTE Application copy
3.	ZLD, Scrubber photograph
4.	Safety Audit report
5.	Environment monitoring Report
6.	Energy audit report
7.	Green belt photograph
8.	EMC cell Organogram
9.	CSR activity details
10.	Raw material storage area
11.	Acoustic enclosed DG photograph
12.	Web cam and flow meter
13.	Ground water approval
14.	Rain water harvesting system photograph
15.	LED street light photograph
16.	Hazardous chemical storage area
17a	Automated filling system
17b	Closed feed system
18.	Fire fighting system
19.	Personal protective equipment
20.	Safety training
21.	Screenshot of EC compliance report uploaded in the company
	website
22.	Vehicle parking area
23.	Corporate EHS policy
24.	EMP budget
25.	Newspaper advertisement copy
26.	EC copy submitted to local bodies
27.	Display board photograph
28.	Form V acknowledgement copy
29.	Chiller
30.	VOC sensors photograph
31.	Strom water drain water photograph
32.	HWA renewal application
33.	Online monitoring report


1.0 Project Details

M/s. Solara Active Pharma Science Limited

Name of the Project "Change in product mix without increase in total production capac			oduction capacity"	
Project Proponent M/s. Solara Active Pharma Science Limited				
Location	R.S. Nos. 30/4pt, 32/1A, 32/2, 32/3, 33/1, 33/10, 33/11, 33/13, 33/2, 33/3, 33/4, 33/5, 33/6, 33/9, 34/1, 34/2, 34/3, 34/4, 34/5, 34/6, 34/7, 34/8, 35/4, 35/5, 35/6, 35/7, 36/5, Periyakalapet, Mathur Road, Puducherry.			
EC. No F. No. 247066/SEIAA/PY/EE/2022 dated: 27.04.2022. EC copy is enclosed as Annexure - 1 .				
Total Land Area	24.30 Acres (98338.	93 Sq.m.)		
Green Built Area	8.42 Acres (34.65%))		
Manpower	789 no's			
	Product Name	Existing Quantity	Proposed Quantity	Total after change in product mix
	Ibuprofen	4308	-312	3996
	Ibuprofen DC	240	0	240
	Ibuprofen Lysinate	120	0	120
	Ibuprofen Sodium	20	0	20
Project Description	S+ Ibuprofen	100	0	100
product & Capacity	Pilot Scale R&D Operations	12	0	12
	Carisoprodol	12	-12	0
	Ammonium lactate	0	120	120
	Celecoxib	0	144	144
	Rebamipide	0	60	60

	Total (TPA)	4812	0	4812
	Total Water Requirement- 762 KLD			
Weter Demoissants	Total Fresh Water Requirement-110 KLD			
Water Requirements	Recycled Water - 652 KLD			
	Source from Bore well and Treated sewage water from PWD STP			
Power Requirements	Puducherry Electricity Department -3860 KVA			
rower Requirements	DG Sets - 2×1500 and 2×1010 KVA			
Hazardous Waste	The total hazard waste quantity generated per Annum is 29079 TPA.			
Management				
Estimated Project	Rs.211.3307 Crores (existing)			
Cost	NS.211.3307 Crore	es (existing)		

2.0 Location Map

4.0 SIX MONTHLY ENVIRONMENTAL CLEARANCE COMPLIANCE STATEMENT

Specific Conditions:

S.No	Conditions	Status of Compliance
i.	This clearance is issued under the provisions of the EIA Notification, 2016. All other statutory clearances as applicable to the project shall be obtained by the project proponent from the concerned competent authority including the Consent to Establish and Operate for change in product mix from the Puducherry Pollution Control Committee (PPCC).	Condition accepted and noted. The CTE application has been applied to PPCC for the new EC. The proof for the CTE application is attached as Annexure -2 . The CTO renewal application is also under process with PPCC. The proof of CTO renewal application submitted to PPCC is attached as Annexure – 2 .
ii.	The pollution and control measures with regard to waste water treatment and disposal, air and noise pollution control measures, hazardous waste and solid waste management and all risk mitigation measures shall be strictly implemented as per the Environmental Management Plan submitted by the project proponent and in consonance with existing rules and regulations.	Condition accepted and noted. As per Environment management plan submitted, all risk mitigation measures were strictly implemented. The photograph of ZLD system, and scrubber photograph is attached as Annexure- 3 .
iii.	There shall be no additional water requirement or waste water generation from the process.	Condition noted. There will be no additional water requirement or no increase in waste water from process.
iv.	No additional land shall be used / acquired for any activity of the project without obtaining Proper permission.	Condition accepted and noted. No additional land will be used for the project activity without proper permission.
v.	Environment and Safety Audit shall be carried out in different operating zones of the plant at least once in a year and the adequacy of environmental safeguards and plant / occupational safety shall be reviewed and necessary corrective measures shall be taken	Condition being complied. Environment and Safety Audit has been carried out in different operating zones of the plant. The safety audit report is attached as Annexure – 4.

S.No	Conditions	Status of Compliance
vi.	The proponent shall continuously monitor ambient VOC levels around the plant and implement necessary VOC control measures.	Condition being complied. The VOC sensors have installed around the plant. The photograph of same is attached as Annexure- 30.
vii.	Fugitive emissions shall be controlled at 99.98% with effective chillers. VOCs shall be controlled at 99.997% with effective chillers / modern technology. The unit shall ensure Zero Liquid Discharge from the plant.	Condition noted. Primary, secondary and tertiary condensers were used to recover and reuse of solvents by which the fugitive emissions will controlled. The condensers photograph is enclosed as Annexure- 17 b. The ZLD system photograph is enclosed as Annexure-3 .
viii.	All the ETP Tanks shall be above the ground level to avoid any ground water contamination. Waste water shall not be stored in underground sumps / tanks.	Condition accepted and noted. The ETP tanks were provided above the ground level to avoid ground water contamination. The ETP photograph is attached as Annexure -3.
ix.	The project proponent shall carry out regular monitoring of the ground water level and quality in and around the industry by establishing network of monitoring wells. Quarterly monitoring of water quality and water level shall be carried out through NABL accredited laboratory covering all seasons and reports shall be submitted to PPCC.	Condition complied. The ground water quality report are attached as Annexure -5 .
x.	Organic Waste Convertor shall be installed for converting organic waste into manure and the manure shall be used for gardening.	Condition will be complied. Installation work of Organic waste convertor inside the site is under process The installation work will be completed in 3 months time.
xi.	The industry shall carry out energy audit through accredited agencies and take appropriate actions for energy conservation.	Condition being complied. The industry has been carried out energy audit through accredited agencies The energy audit report is attached as Annexure 6 .
xii.	The project proponent has allocated 8.42 acres of land (34.65%) for green belt development. This area shall not be diverted for other use. Stratified	Condition accepted and noted. The entire plant is covered with greenbel area of 8.62 Acres which is 34.65 % of the

S.No	Conditions	Status of Compliance
	green belt with tall trees and shrubs beneath should be developed and maintained properly to serve as effective sink for air pollutants.	total area of 24.30 acres. The green belt photograph and plant specie detail is attached as Annexure – 7 .
xiii.	A separate Environment Management Cell (having qualified persons with Environmental Science / Engineering / Management specializations) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.	Condition accepted and noted. A separate environment Managemen cell having qualified persons has been se up to carry out Environmen management and Monitoring functions. The EMC organogram is attached a Annexure – 8.
xiv.	As per the MoEF CC OM dated 30.09.2020 superseding the OM dated 01.05.2018 regarding the Corporate Environmental Responsibility, the project proponent shall allocate an amount of Rs. 1.58 Crores towards environment conservation and community welfare activities, which shall be utilized over a period of three years. The said amount shall be utilized for activities like infrastructure creation for drinking water supply, sanitation, health, education, skill development, roads, cross drains, electrification including solar power, solid waste management facilities, scientific support and awareness to local farmers to increase yield of crop and fodder, rain water harvesting, soil moisture conservation works, avenue plantation, plantation in community areas, etc. within the project area. The Project Proponent shall prepare a separate project report on the proposed environment conservation and community welfare activities in consultation with the District Collector and copy of the report shall be submitted to the District Collector, SEIAA, PPCC and Regional Office of MoEF CC. The	Condition accepted and noted. The CER detail is attached as Annexure- 9.

S.No	Conditions	Status of Compliance
	bound manner in consultation with the District Collector. The project progress	
	report shall be submitted to the SEIAA,	
	PPCC and Regional Office of MoEF CC as a part of the half yearly compliance	
	report. The above fund allocated towards	
	environment conservation support activities is to be in addition to the cost	
	envisaged under the CSR budget of the	
	company which will be allocated as per	
	the rules prescribed by the Government	
	of India / Companies Act 2013.	

GENERAL CONDITIONS:

I. Statutory compliance

S.No	Conditions	Status of Compliance
1.	The project proponent shall obtain Consent to Establish / Operate under the provisions of the Air (Prevention & Control of Pollution) Act, 1981 and the Water (Prevention & Control of Pollution) Act, 1974 from the PPCC before commencement of production of the new products and shall submit copy of the same to SEIAA, Puducherry.	Condition accepted and noted. The CTE and CTO renewal application is under process. The application proof submitted to PPCC is attached as Annexure - 2 .
2.	The project proponent shall obtain authorization under the Hazardous and other Waste Management Rules, 2016 as amended from time to time from PPCC.	Condition accepted and noted. The HWA renewal Application is in progress with PPCC and the proof is attached as Annexure- 32.
3.	The Company shall strictly comply with the rules and guidelines under Manufacture, Storage and Import of Hazardous Chemicals (MSIHC) Rules, 1989 as amended time to time. All transportation of Hazardous Chemicals shall be as per the Motor Vehicle Act (MVA), 1989.	Condition accepted and noted.

II. Air quality monitoring and preservation

S.No	Conditions	Status of Compliance
1.	The project proponent shall install 24x7 continuous emission monitoring system at process stacks to monitor stack emission with respect to standards prescribed in Environment (Protection) Rules, 1986 and the data to be transmitted to PPCC and CPCB online servers. This system shall be calibrated from time to time according to equipment supplier specification through labs recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories.	Condition accepted and noted. The online monitoring report is attached as Annexure -33 .
2.	The project proponent shall monitor fugitive emissions in the plant premises at least once in every quarter through labs recognized under Environment (Protection) Act, 1986.	Condition accepted and noted.
3.	The project proponent shall install system to carryout Ambient Air Quality Monitoring for common/criterion parameters relevant to the main pollutants released (e.g. PM10 and $PM_{2.5}$ in reference to PM emission, and SO2 and NO2 in reference to SO2 and NOx emissions) within and outside the plant area at least at four locations (one within and three outside the plant area at an angle of 120° each), covering upwind and downwind directions.	Condition noted. Online monitoring systems were used to monitor the given emission. The online monitoring report is attached as Annexure – 33
4.	To control source and the fugitive emissions, suitable pollution control devices shall be installed to meet the prescribed norms and / or the NAAQS. The gaseous emissions shall be dispersed through stack of adequate height as per CPCB/PPCC guidelines.	Condition being complied. To control source and the fugitive emissions scrubbers has been installed. The photograph of scrubber is attached as Annexure-3.
5.	Storage of raw materials shall be either stored in silos or in covered areas to	Condition being complied.

S.No	Conditions	Status of Compliance
	prevent dust pollution and other fugitive emissions.	The raw material has been stored in a closed storage area The photograph of Raw material storage area is attached as Annexure- 10 .
6.	The DG sets shall be equipped with suitable pollution control devices and adequate stack height so that the emissions are in conformity with the extant regulations and the guidelines in this regard.	Condition accepted and noted. The acoustic enclosed DG set photograph is Attached as Annexure -11 .
7.	National Emission Standards for Organic Chemicals Manufacturing Industry issued by the Ministry vide G.S.R. 608(E) dated 21st July, 2010 and amended from time to time shall be followed.	Agreed to comply.
8.	The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16th November, 2009 and amendment from time to time shall be complied with.	Condition accepted and noted. The ambient air quality report is attached as Annexure – 5.

III. Water quality monitoring and preservation

S.No	Conditions	Status of Compliance
1.	The project proponent shall provide online continuous monitoring for treated effluent. The unit shall install web camera with night vision capability and flow meters in the channel/drain/pipelines carrying effluent within the premises.	Condition accepted and noted. The unit has installed web camera with night vision and low meters in the channel/drain/pipeline. The photograph of the same is attached as Annexure – 12 .
2.	As already committed by the project proponent, Zero Liquid Discharge shall be ensured and no waste/treated water shall be discharged outside the premises.	Condition accepted and noted. The ZLD photos are attached as Annexure – 3 .
3.	The effluent discharge shall conform to the standards prescribed under the Environment (Protection) Rules, 1986 or as specified by the Puducherry Pollution	Condition accepted and noted. The ETP water quality report is attached as Annexure -5.

S.No	Conditions	Status of Compliance
	Control Committee while granting Consent under the Air/Water Act, whichever is more stringent	
4.	Total fresh water requirement shall not exceed the proposed quantity or as specified by the Committee. Prior permission shall be obtained from the concerned regulatory authority/CGWA in this regard.	Agreed to comply. The fresh water requirement is 110 KLD which is met through Bore well. The remaining 652 KLD of water will be met through PWD STP. The ground water permission from Puducherry ground water authority is attached as Annexure -13 .
5.	Process effluent/any wastewater shall not be allowed to mix with storm water. The storm water from the premises shall be collected and discharged through a separate conveyance system.	Condition accepted and noted. As ZLD system is followed, the process effluent water will not mix with the storm water. The storm water drain photograph is attached as Annexure- 31 .
6.	The Company shall harvest rainwater from the roof tops of the buildings and storm water drains to recharge the ground water and utilize the same for different industrial operations within the plant.	Agreed to comply. The Rain water system photograph is attached as Annexure -14 .

IV. Noise monitoring and prevention

S.No	Conditions	Status of Compliance
1.	Acoustic enclosure shall be provided to DG set for controlling the noise pollution.	Condition noted. DGs are provided with inbuilt acoustic enclosures. The photograph of same is attached as Annexure-11 .
2.	The overall noise levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation.	Condition agreed to comply.
3.	The ambient noise levels should conform to the standards prescribed under	Condition accepted and noted. The ambient noise monitoring report is

Environment (Protection) Rules, 1986	attached as Annexure – 5.
viz., 75 dB (A) during day time and 70	
dB(A) during night time.	

V. Energy Conservation measures

S.No	Conditions	Status of Compliance
1.	The energy sources for lighting purposes shall preferably be LED based or advanced energy efficient lighting systems.	The half street lights have been instance in

VI. Waste management

S.No	Conditions	Status of Compliance
1.	Hazardous chemicals shall be stored in tanks, tank farms, drums, carboys etc. Flame arresters shall be provided on tank farm and the solvent transfer through pumps.	Condition being complied. Hazardous chemicals were stored in closed tanks, bags and drums in separate storage area. Flame arrestors have been provided. The photograph of hazardous chemicals storage area and flame arrestors is attached as Annexure- 16 .
2.	Hazardous wastes like waste dichromate solution, ETP Sludge, waste oil, spent solvent, distillation residue, process residue, spent catalyst / carbon, off specification products, date expired / discarded off specification drugs, spent organic solvents, Sludge from Treatment of Wastewater arising out of cleaning / disposal of Barrels / containers, Discarded Containers / Barrels / Liners, Contaminated with Hazardous waste Chemicals, Chemical Sludge from Wastewater treatment, Oil and Grease Skimming Residues and spent acid shall be disposed off to the cement plants for	Condition accepted and noted. The HWA application is under process with PPCC. The proof of submitted application to PPCC is attached as Annexure- 32 .

S.No	Conditions	Status of Compliance
	co-processing, reprocessing units or TSDFs after obtaining necessary Hazardous Waste Authorization from PPCC.	
3.	 The company shall undertake waste minimization measures as below:- a) Metering and control of quantities of active ingredients to minimize waste. b) Reuse of by-products from the process as raw materials or as raw material substitutes in other processes. c) Use of automated filling to minimize spillage. d) Use of Close Feed system into batch reactors. e) Venting equipment through vapour recovery system. f) Use of high-pressure hoses for equipment cleaning to reduce waste water generation. 	 a) Condition agreed to comply. b) Condition accepted and noted. c) Condition agreed. The automated filling system photograph is attached as Annexure- 17a. d) Condition accepted. The closed feed system photograph is attached as Annexure- 17 b. e) Condition noted. f) Condition noted.

VII. Green Belt

S.No	Conditions	Status of Compliance
1.	The green belt of 5-10 m width shall be developed in more than 33% of the total project area, mainly along the plant periphery, in downward wind direction, and along road sides etc. Selection of plant species shall be as per the CPCB guidelines in consultation with the Forest Department	The entire plant is covered with greenbelt area of 8.62 Acres which is 34.65 % of the total area of 24.30 acres. The green belt photograph is attached as

VIII. Safety and Human health issues

S.No	Conditions	Status of Compliance
1.	Emergency preparedness plan based on the Hazard Identification and Risk Assessment (HIRA) and Disaster Management Plan shall be implemented.	Agreed to comply.
2.	The unit shall make the arrangement for protection of possible fire hazards during manufacturing process and material handling. Firefighting system shall be as per the norms.	Condition noted. To protect the unit from fire hazards during manufacturing and material handling a firefighting system has been implemented in the plant. The fire fighting system photograph has been attached as Annexure -18 .
3.	The Project Proponent shall provide Personal Protection Equipment (PPE) as per the norms of Factory Act.	Condition accepted and noted. Personal protective equipment has been provided to the workers as per factory act. The PPE photograph is attached as Annexure – 19.
4.	Training shall be imparted to all employees on safety and health aspects of chemicals handling. Pre-employment and routine periodical medical examinations for all employees shall be undertaken on regular basis.	Condition being complied. Mock drill training were conducted with regular period of time for the employees. The safety training photograph is attached as Annexure – 20 .
5.	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Condition accepted and noted.
6.	There shall be adequate space inside the plant premises earmarked for parking of vehicles for raw materials and finished products, and no parking to be allowed outside on public places.	Condition accepted and noted. An adequate space has been provided for parking of vehicles for unloading the raw materials and loading the finished products. The photograph of the same is attached as Annexure-22 .

IX. Corporate Environment Responsibility

S.No	Conditions	Status of Compliance
1.	The company shall have a well laid down environmental policy duly approved by the Board of Directors. The environmental policy should prescribe standard operating procedures to have proper checks and balances and to bring into focus any infringements / deviation / violation of the environment / forest / wildlife norms / conditions. The company shall have defined system of reporting infringements / deviation / violation of the environmental / forest / wildlife norms / conditions and / or shareholders / stake holders. The copy of the board resolution in this regard shall be submitted as a part of half yearly compliance report.	Condition accepted and noted. The company has well laid down environment policy which approved by the board of directors. The company environment policy is attached as Annexure – 23 .
2.	A separate Environmental Cell both at the project and company head quarter level, with qualified personnel shall be set up under the control of senior Executive, who will directly report to the head of the organization.	Condition accepted and noted. A dedicated qualified person has been set under the control of senior Executive, who is directly report to the head of the organization. The EMC organogram is attached as Annexure – 8 .
3.	Action plan for implementing EMP and environmental conditions along with responsibility matrix of the company shall be prepared and shall be duly approved by competent authority. The year wise funds earmarked for environmental protection measures shall be kept in separate account and not to be diverted for any other purpose. Year wise progress of implementation of action plan shall be reported to the SEIAA, PPCC and Regional Office of MoEFCC along with the Six-Monthly Compliance Report.	Agreed to comply. The EMP budget plan is attached as Annexure -24.
4.	Self-environmental audit shall be conducted annually. Every three years	Agreed to comply.

S.No	Conditions	Status of Compliance
	third party environmental audit shall be carried out.	

X. Miscellaneous

S.No	Conditions	Status of Compliance
i.	The project proponent shall make public the environmental clearance granted for their project along with the environmental conditions and safeguards at their cost by prominently advertising it at least in two local newspapers of the District, of which one shall be in the vernacular language within seven days and in addition this shall also be displayed in the project proponent's website permanently.	Condition complied. The Newspaper advertisement was published in both English and local vernacular language. The newspaper advertisement copy is attached as Annexure-25 .
ii.	The copies of the environmental clearance shall be submitted by the project proponents to the Heads of local bodies, Panchayats and Municipal Bodies in addition to the relevant offices of the Government (Industries Department and PPCC) who in turn has to display the same for 30 days from the date of receipt.	Condition complied. The copy of same is attached as Annexure- 26.
iii.	No further expansion or modifications in the plant shall be carried out without prior Environmental Clearance from SEIAA / MoEFCC, as applicable. In case of any deviation or alterations in the project proposal from those submitted to the SEIAA for clearance, a fresh reference shall be made to the SEIAA / MoEFCC, as applicable, to assess the adequacy of the conditions imposed and to add additional environmental protection measures required, if any.	Condition accepted and noted. There is no expansion or modification in the project.
iv.	The project proponent shall upload the status of compliance of the stipulated environment clearance conditions,	Condition being complied. The compliance report with monitored data has been uploaded in the company website

S.No	Conditions	Status of Compliance
	including results of monitored data on their website and update the same on half-yearly basis.	on half – yearly basis. The screenshot of the same is attached as Annexure – 21.
v.	The project proponent shall monitor the criteria pollutants level viz., PM10, SO2, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the projects and display the same at a convenient location for disclosure to the public and put on the website of the company.	Condition accepted and noted. The ambient air quality monitoring report is attached as Annexure –5 . The display board photograph is attached as Annexure –27 .
vi.	The project proponent shall submit six- monthly compliance report on the status of the compliance of the stipulated environmental conditions including results of monitored data in hard and soft copies on 1st June and 1st December of each calendar year in respect of the conditions stipulated in the Environmental Clearance issued to SEIAA, PPCC and Regional Office of CPCB and MoEFCC.	Condition being complied The six monthly compliance report along with monitoring data is being submitted to the PPCC, MoEF and CPCB.
vii.	The project proponent shall submit six- monthly reports on the status of the compliance of the stipulated environmental conditions on the website of the Ministry of Environment, Forest and Climate Change at environment clearance portal.	Condition being complied.
viii.	The project proponent shall submit the Environmental Statement for each financial year in Form-V to the Puducherry Pollution Control Committee as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently and put on the website of the company.	Condition being complied. The Form -V submission acknowledgement copy is attached as Annexure – 28.
ix.	The project proponent shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and start of production operation by the project.	Condition accepted and noted

S.No	Conditions	Status of Compliance
x.	The project authorities must strictly adhere to the stipulations made by the Puducherry Pollution Control Committee and the U.T. Government.	Condition noted.
xi.	Concealing factual data or submission of false/fabricated data may result in revocation of this environmental clearance and attract action under the provisions of Environment (Protection) Act, 1986.	Condition agreed to comply.
xii.	The SEIAA may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.	Condition agreed.
xiii.	The SEIAA reserves the right to stipulate additional conditions if found necessary. The Company in a time bound manner shall implement these conditions.	Condition accepted and noted.
xiv.	The Puducherry Pollution Control Committee and Regional Office of MoEFCC shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the Officer (s) of the PPCC / Regional Office of MoEFCC by furnishing the requisite data / information / monitoring reports whenever requested.	Condition agreed. Full co –operation will be given to the officers during inspection.
xv.	The above conditions shall be enforced, inter-alia under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 and the Public Liability Insurance Act, 1991 along with their amendments and Rules and any other orders passed by the Hon'ble	Condition accepted and noted.

S.No	Conditions	Status of Compliance
	and any other Court of Law relating to the subject matter.	
xvi.	Any appeal against this EC shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act,2010	Condition agreed.

XI. VALIDITY:

S.No	Conditions	Status of Compliance
1.	The validity of this Environmental Clearance is for Ten years from the date of issue of EC.	

5.0 ENVIRONMENTAL MONITORING DETAILS

It is mandatory to submit six-monthly compliance report to MoEF Regional Office by the proponent. For submitting six-month compliance, Environmental monitoring was carried out at site during the period of April 2023 – September 2023.

5.1 Ambient air quality monitoring

The ambient air quality parameters such as Particulate matter $<10\mu$ (PM10), Particulate matter $<2.5 \mu$ (PM 2.5), Sulphur dioxide, Oxides of Nitrogen (NO_x) and Carbon monoxide were monitored. The test report of ambient air quality recorded for the Period of April 2023 – September 2023 is enclosed in **Annexure -5**.

5.2 Ambient Noise level monitoring

Noise level is being monitored and the test report of ambient noise recorded during the Period of April 2023 – September 2023 is enclosed in **Annexure -5**.

5.3 Ground water quality monitoring

Ground water was tested for various water quality parameters during the period of April 2023 – September 2023 .The test report of bore well water collected and analyzed is enclosed as **Annexure- 5**.

5.4 Stack Emission monitoring

The existing Boiler and DG stack emission quality parameters such as Particulate matter, Sulphur dioxide, Oxides of Nitrogen (NOx), Acid mist and Flue gas temperature were monitored. The test report of stack emission quality recorded during the period of April 2023 – September 2023 is enclosed in **Annexure -5**.

6.0 CONCLUSION

- 1. The environmental monitoring was carried out at site during the period April 2023September 2023for \mathbf{EC} obtained vide the _ F.No.247066/SEIAA/PY/EE/2022 dated: 27.04.2022
- 2. All the conditions stipulated in Environmental clearance are being implemented.

M/s Solara Active Pharma Science Limited

Rameth. L uduchern 605 014 Authorized Signatory Vakala!

ANNEXURE

ENVIRONMENTAL		Ministry of Environ (Issued by the State	vernment of India ment, Forest and Climate Change Environment Impact Assessment y(SEIAA), Puducherry)
CLE		To, The VP MS. SOLARA ACTIVE PH/ Mathur Road, Periakalapet	ARMA SCIENCES LIMITED Puducherry -605014
ctive,	(qı	under the provision of EIA Sir/Madam,	earance (EC) to the proposed Project Activity Notification 2006-regarding ur application for Environmental Clearance (EC)
and Responsive Facilitation by Interactive,	ous Environmental Single-Window Hub	in respect of project submitte	d to the SEIAA vide proposal number Dec 2021. The particulars of the environmental
h	Vin	1. EC Identification No.	EC22B058PY151130
uo		2. File No.	247066/SEIAA/PY/EE/2022
ati	gle	3. Project Type	New
ilit	in	4. Category	B2
Fac	al S	5. Project/Activity including Schedule No.	5(f)-API
sive	ment	6. Name of Project	Proposed Change In Product Mix Without Increase In Total Production Capacity (4812 TPA)
spor	iron	7. Name of Company/Organization	MS. SOLARA ACTIVE PHARMA SCIENCES LIMITED
Se	N	8. Location of Project	Puducherry
and	us E	9. TOR Date	N/A
(Pro-Active	and Virtuo	The project details along with terms a no 2 onwards.	and conditions are appended herewith from page
(Pro-	Je	Date: 27/04/2022	(e-signed) Smt. SMITHA. R, I.A.S Member Secretary SEIAA - (Puducherry)

PARIVESH

Note: A valid environmental clearance shall be one that has EC identification number & E-Sign generated from PARIVESH.Please quote identification number in all future correspondence.

This is a computer generated cover page.

GOVERNMENT OF PUDUCHERRY DEPARTMENT OF SCIENCE, TECHNOLOGY AND ENVIRONMENT STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY 3rd FLOOR, PHB BUILDING, ANNA NAGAR, PUDUCHERRY – 605 005. Telephone: (0413) 2201256 TeleFax: (0413) 2203494. Email: seiaapuducherry@gmail.com

Director (DSTE) / Member Secretary (SEIAA)

No. SEIAA/PY/EE/247066/2021

Sir,

- Sub: DSTE/SEIAA, U.T of Puducherry Proposal for Environmental Clearance submitted by M/s. Solara Active Pharma Sciences Limited, Puducherry for proposed change in Product Mix without increase in Total Production Capacity (4812 TPA) – Issued.
- Ref: (i) Your Online Application No. SIA/PY/IND3/247066/2021 dated 29.12.2021 in Parivesh Portal.
 - (ii) Minutes of the 29th SEAC Meeting held on 15.03.2022 and 16.03.2022.
 - (iii) Minutes of the 24th SEIAA Meeting held on 20.04.2022.

* * *

This has reference to your application cited (i) above submitted to the State level Environment Impact Assessment Authority (SEIAA), Government of Puducherry seeking Environmental Clearance under the Environment Impact Assessment Notification, 2006 and its subsequent amendments. The proposal has been appraised by the State Level Expert Appraisal Committee (SEAC) in its 29th SEAC Meeting held on 15.03.2022 and 16.03.2022 as per the prescribed procedure in the light of provisions under the EIA Notification, 2006 on the basis of the mandatory documents enclosed with the application *viz.*, Form-I, Form-IA, Conceptual Plans and the additional clarifications furnished by the proponent.

It is noted that the project proposal involves proposed change in Product Mix without increase in total production capacity (4812 TPA). Project details are as under:

Name of the Project	Change in product mix without by M/s. Solara Active Pharma S	-	-	pacity (4812 TPA)					
Project Location	R.S. Nos. 30/4pt, 32/1A, 32/2, 32/3, 33/1, 33/10, 33/11, 33/13, 33/2, 33/3, 33/4, 33/5, 33/6, 33/9, 34/1, 34/2, 34/3, 34/4, 34/5, 34/6, 34/7, 34/8, 35/4, 35/5, 35/6, 35/7, 36/5, Periyakalapet, Mathur Road, Puducherry.								
Project Description – Product &	Product Name	Existing Quantity	Proposed Quantity	Total after change in product mix					
Capacity	Ibuprofen	4308	-312	3996					
	Ibuprofen DC	240	0	240					
	Ibuprofen Lysinate	120	0	120					
	Ibuprofen Sodium	20	0	20					
	S+ Ibuprofen	100	0	100					
	Pilot Scale R&D Operations	12	0	12					
	Carisoprodol	12	12 -12						
	Ammonium lactate	0	120	120					
	Celecoxib	0	144	144					
	Rebamipide	0	60	60					
	Total (TPA)	4812	0	4812					
Total land area	24.30 Acres (98338.93 Sq.m.)								
Green belt area	8.42 Acres (34.65%)								
Manpower	789 (Existing - 789 & Proposed	- Nil)							
Power requirement	3860 KVA (Existing - 3860 & F	Proposed - Nil)							
Source of power	Puducherry Electricity Departm	ent							
Power backup	Existing - 2 x 1500 and 2 x 1010 Proposed - Nil	0 KVA DG Sets							
Water Source	Bore well and Treated Sewage v	water from PWD S	STP.						

Water	requirement			
Fotal V	Vater Requirement:			
S. Description		Existing	Proposed	After Change in product mix
1	Freshwater requirement (A)	110	No Change	110
2	Recycled water (B)	652	No Change	652
3	Treated sewage from PWD (C)*	566	No Change	566
Total	(A+B)	762	-	762

*Note: Recycled water includes treated sewage water consumed from PWD STP: Approved treated sewage quantity by PWD is 590 KLD as per Water Consent.

Water Requirement Break-up:

XXI (D 1	After change	Total Break-up			
Water requirement	Existing (KLD)	Proposed (KLD)	in product mix (KLD)	Fresh water	Treated Water		
Process	80	Nil	80	80	-		
Non-Process (DM Plant)	16	Nil	16	16	-		
Process cooling tower	323	Nil	323	_	323		
Cooling tower (ZLD)	150	Nil	150	-	150		
Boiler Feed	154	Nil	154	_	154		
Domestic	29	Nil	29	4	25		
Green belt	10	Nil	10	10	-		
Total	762	Nil	762	110	652		

Waste Water Generation:

Description	escription Existing (KLD)		After Change in product mix (KLD)	Treatment Units	Final Disposal Points
HTDS (from process)	50	No change	50	MEE and ATFD	ZLD facility
Domestic	25	No change	25		

Treated sewage water from PWD			566		No chang		566				
Effluent from, Non process, Boiler, coiling tower blowdown			11	No chang		e	11				
Process effluent from Strides pharma sciences Ltd – Formulation division (non-EC category)		ces ion	43	No chang		e	43	ETP		ological followed y RO.	Reused for Non process application
Total LTI	OS effluent		645		No chang	e	645				
Total (H) effluent)	$\Gamma DS + LT$	DS	695		No chang	e	695				
Air Emissio	Air Emissions										
Details	Air I	Pollu	tion So	ourc	e		N				
	Existing	Pro	posed	cha pr	After inge in oduct mix	E	Existing	Prop	oosed	After change in product mix	APC Measures
	IBU		BU + ecoxib		BU + lecoxib		1		0	1	Existing Wet Scrubber/ Bag Filter
Stack Process	S-IBU	R	BU + eba- mide	R	IBU + Reba- imide		0		0	0	Bag Filter
	IBU Lysine	Am	IPCA + Ammoniu m lactate		CA + moniu lactate	0			0	0	Bag Filter
	IBU Sodium		BU ysine		IBU ysine		0		0	0	Bag Filter
	DC-90		BU dium		IBU odium		0		0	0	Bag Filter
	IPCA	D	C-90	D	C-90		0		0	0	Bag Filter
Stack – Non Process (DG)	2 x 1500 KVA 2 x 1010 KVA	No o	change	Ь 2 х	x 1500 XVA x 1010 XVA		4	(0	4	Chimney 18 m height, AGL

Boiler – Bio Mass Briquette	boiles star boi 1 X 1 Kca The Fli He 1 X 1 Kca The Fli He (Sta	6TPH r (1 in ndby iler) 2 Lac al/hr ermic uid ater l0 Lac al/hr ermic uid ater ndby FH)	o change	boild sta bo 1 X Ko F Ho 1 X Ko Tho F Ho (Sta	16TPH er (1 in indby biler) 12 Lac cal/hr ermic luid eater 10 Lac cal/hr ermic luid eater luid eater fH)	2		0	2	Multi cyclone Dust Collector going in for Bag Filter and then to Stack, 30 m AGL		
		al No of	Stacks		,	7		0	7			
Solid Wast	e	()uantity ((Kg/	dav)							
Descriptio	n F	Existing Propose			After change		Method of Collection		Method of Disposal			
Organic		210.3	Nil		210.3		Collection in bins Manual		Existing: Composting and used as manure for gardening. Proposed: Compost in Organic waste convertor & will be used as manure for gardening.			
Inorganic		142.02	Nil		142.02		in	llection bins nual	Authorized recyclers.			
Boiler as (TPD) (fro Bio- briquettes boiler)	sh m	5	Nil		5		5		ſ	Manual	Distributed local vill agricultural transport trucks wi sprinkling by tarpaulin	agers for purposes, through ith water & covered

Name of the Hazardous Waste	Existing KLA/TPA	Proposed Quantity KLA/TPA	After Change in product mix Quantity KLA/TPA	Method of Stage / Disposal
Waste Sodium Dichromate Solution	22000	Nil	22000	Dispose to Authorized Vendor.
34.1ETP Sludge	3	Nil	3	Sent to Co-processing in Cement Industries
5.1 Spent Lubricating Oil	4	Nil	4	Dispose to PPCC Authorized Vendor.
5.2 Waste / Residue containing Oil	150	Nil	150	Dispose to PPCC Authorized Vendor.
20.2 Spent Solvent	900	Nil	900	Dispose to PPCC Authorized Vendor.
20.3 Distillation Residue	48	Nil	48	Dispose to PPCC Authorized Vendor.
28.1 Process Residue / Waste	720	Nil	720	Dispose to PPCC Authorized Vendor.
28.2 Spent Catalyst / Spent Carbon	54	Nil	54	Dispose to PPCC Authorized Vendor
28.3 Off Specification Product	1	Nil	1	Dispose to PPCC Authorized Vendor.
28.4 Date Expired / Discarded Off Specification drugs / Medicines	1	Nil	1	Dispose to PPCC Authorized Vendor.
28.5 Spent Organic Solvent	36	Nil	36	Dispose to PPCC Authorized Vendor.
33.2 Sludge from Treatment of Wastewater arising out of cleaning / disposal of Barrels / containers		Nil	20	Dispose to PPCC Authorized Vendor.
33.3 Discarded Containers / Barrels / Liners, Contaminated with Hazardous waste Chemicals		Nil	250	Dispose to PPCC Authorized Vendor.
35.1 Chemical Sludge from Wastewater treatment		Nil	4800	ATFD salts are collected directly dispose to nearby TSDF sites / Co processor.
34.4 Oil and Grease Skimming Residues	1	Nil	1	
35.2 Spent Catalyst	1	Nil	1	Dispose to PPCC Authorized Vendor.
35.3 Spent Carbon	90	Nil	90	· · · · · · · · · · · · · · · · · · ·
Spent Acid	0	Nil	0	
Total	29079	-	29079	

Project Cost	Rs. 211.3307 Crores (existing); No additional project cost for proposed change in product mix.
EMP Cost	Total Capital Cost - Rs. 40 Crores. Recurring Cost / Month - Rs. 1.5 Crores. No additional EMP cost for proposed change in product mix.

The project is covered under 5(f) Synthetic Organic Chemicals Industry in the Schedule to EIA Notification, 2006 and falls under B2 Category (as per amendment dated 27.03.2020, 15.10.2020 & 16.07.2021).

The proposal was appraised by SEAC in the 29th SEAC meeting held on 15 and 16th February 2022 and SEAC has recommended the case for issue of Environmental Clearance stipulating the specific conditions along with standard EC conditions prescribed by MoEFCC for Pharmaceutical / Chemical Industry sector. The proposal was examined by the SEIAA in its 24th Meeting held on 20.04.2022 and the Authority accepted the recommendations of SEAC. Based on the recommendations of SEAC, the SEIAA hereby accords Environmental Clearance to the above project under the provisions of EIA Notification dated 14th September 2006 and subsequent amendments subject to strict compliance of the following Specific and General conditions.

SPECIFIC CONDITIONS

- This clearance is issued under the provisions of the EIA Notification, 2016. All other statutory clearances as applicable to the project shall be obtained by the project proponent from the concerned competent authority including the Consent to Establish and Operate for change in product mix from the Puducherry Pollution Control Committee (PPCC).
- ii) The pollution and control measures with regard to waste water treatment and disposal, air and noise pollution control measures, hazardous waste and solid waste management and all risk mitigation measures shall be strictly implemented as per the Environmental Management Plan submitted by the project proponent and in consonance with existing rules and regulations.
- iii) There shall be no additional water requirement or waste water generation from the process.
- iv) No additional land shall be used / acquired for any activity of the project without obtaining proper permission.

- v) Environment and Safety Audit shall be carried out in different operating zones of the plant at least once in a year and the adequacy of environmental safeguards and plant / occupational safety shall be reviewed and necessary corrective measures shall be taken.
- vi) The proponent shall continuously monitor ambient VOC levels around the plant and implement necessary VOC control measures.
- vii)Fugitive emissions shall be controlled at 99.98% with effective chillers. VOCs shall be controlled at 99.997% with effective chillers / modern technology. The unit shall ensure Zero Liquid Discharge from the plant.
- viii)All the ETP Tanks shall be above the ground level to avoid any ground water contamination. Waste water shall not be stored in underground sumps / tanks.
- ix) The project proponent shall carry out regular monitoring of the ground water level and quality in and around the industry by establishing network of monitoring wells. Quarterly monitoring of water quality and water level shall be carried out through NABL accredited laboratory covering all seasons and reports shall be submitted to PPCC.
- x) Organic Waste Convertor shall be installed for converting organic waste into manure and the manure shall be used for gardening.
- xi) The industry shall carry out energy audit through accredited agencies and take appropriate actions for energy conservation.
- xii) The project proponent has allocated 8.42 acres of land (34.65%) for green belt development. This area shall not be diverted for other use. Stratified green belt with tall trees and shrubs beneath should be developed and maintained properly to serve as effective sink for air pollutants.
- xiii) A separate Environment Management Cell (having qualified persons with Environmental Science / Engineering / Management specializations) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.
- xiv) As per the MoEFCC OM dated 30.09.2020 superseding the OM dated 01.05.2018 regarding the Corporate Environmental Responsibility, the project proponent shall allocate an amount of Rs. 1.58 Crores towards environment conservation and community welfare activities, which shall be utilized over a period of three years. The said amount shall be utilized for activities like infrastructure creation for drinking water supply, sanitation, health, education, skill development, roads, cross drains, electrification including solar power, solid waste management facilities, scientific support and awareness to local farmers to increase yield of crop and fodder, rain water harvesting, soil moisture conservation works, avenue plantation, plantation in community areas, etc. within the project area. The

Project Proponent shall prepare a separate project report on the proposed environment conservation and community welfare activities in consultation with the District Collector and copy of the report shall be submitted to the District Collector, SEIAA, PPCC and Regional Office of MoEFCC. The activities shall be implemented in a time bound manner in consultation with the District Collector. The project progress report shall be submitted to the SEIAA, PPCC and Regional Office of MoEFCC as a part of the half yearly compliance report. The above fund allocated towards environment conservation support activities is to be in addition to the cost envisaged under the CSR budget of the company which will be allocated as per the rules prescribed by the Government of India / Companies Act 2013.

GENERAL CONDITIONS

I. Statutory compliance

- The project proponent shall obtain Consent to Establish / Operate under the provisions of the Air (Prevention & Control of Pollution) Act, 1981 and the Water (Prevention & Control of Pollution) Act, 1974 from the PPCC before commencement of production of the new products and shall submit copy of the same to SEIAA, Puducherry.
- ii) The project proponent shall obtain authorization under the Hazardous and other Waste Management Rules, 2016 as amended from time to time from PPCC.
- iii) The Company shall strictly comply with the rules and guidelines under Manufacture, Storage and Import of Hazardous Chemicals (MSIHC) Rules, 1989 as amended time to time. All transportation of Hazardous Chemicals shall be as per the Motor Vehicle Act (MVA), 1989.

II. Air quality monitoring and preservation

- i) The project proponent shall install 24x7 continuous emission monitoring system at process stacks to monitor stack emission with respect to standards prescribed in Environment (Protection) Rules, 1986 and the data to be transmitted to PPCC and CPCB online servers. This system shall be calibrated from time to time according to equipment supplier specification through labs recognized under Environment (Protection) Act, 1986 or NABL accredited laboratories.
- ii) The project proponent shall monitor fugitive emissions in the plant premises at least once in every quarter through labs recognized under Environment (Protection) Act, 1986.
- iii) The project proponent shall install system to carryout Ambient Air Quality Monitoring for common/criterion parameters relevant to the main pollutants released (e.g. PM_{10} and $PM_{2.5}$ in reference to PM emission, and SO_2 and NO_2 in reference to SO_2 and NO_x emissions) within and outside the plant area at least at four locations (one within and three outside the plant area at an angle of 120° each), covering upwind and downwind directions.

- iv) To control source and the fugitive emissions, suitable pollution control devices shall be installed to meet the prescribed norms and / or the NAAQS. The gaseous emissions shall be dispersed through stack of adequate height as per CPCB/PPCC guidelines.
- v) Storage of raw materials shall be either stored in silos or in covered areas to prevent dust pollution and other fugitive emissions.
- vi) The DG sets shall be equipped with suitable pollution control devices and adequate stack height so that the emissions are in conformity with the extant regulations and the guidelines in this regard.
- vii) National Emission Standards for Organic Chemicals Manufacturing Industry issued by the Ministry vide G.S.R. 608(E) dated 21st July, 2010 and amended from time to time shall be followed.
- viii) The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16th November, 2009 and amendment from time to time shall be complied with.

III. Water quality monitoring and preservation

- i) The project proponent shall provide online continuous monitoring for treated effluent. The unit shall install web camera with night vision capability and flow meters in the channel/drain/pipelines carrying effluent within the premises.
- ii) As already committed by the project proponent, Zero Liquid Discharge shall be ensured and no waste/treated water shall be discharged outside the premises.
- iii) The effluent discharge shall conform to the standards prescribed under the Environment (Protection) Rules, 1986 or as specified by the Puducherry Pollution Control Committee while granting Consent under the Air/Water Act, whichever is more stringent.
- iv) Total fresh water requirement shall not exceed the proposed quantity or as specified by the Committee. Prior permission shall be obtained from the concerned regulatory authority/CGWA in this regard.
- v) Process effluent/any wastewater shall not be allowed to mix with storm water. The storm water from the premises shall be collected and discharged through a separate conveyance system.
- vi) The Company shall harvest rainwater from the roof tops of the buildings and storm water drains to recharge the ground water and utilize the same for different industrial operations within the plant.

IV. Noise monitoring and prevention

- i) Acoustic enclosure shall be provided to DG set for controlling the noise pollution.
- ii) The overall noise levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation.
- iii) The ambient noise levels should conform to the standards prescribed under Environment (Protection) Rules, 1986 viz., 75 dB(A) during day time and 70 dB(A) during night time.

V. Energy Conservation measures

i) The energy sources for lighting purposes shall preferably be LED based or advanced energy efficient lighting systems.

VI. Waste management

- i) Hazardous chemicals shall be stored in tanks, tank farms, drums, carboys etc. Flame arresters shall be provided on tank farm and the solvent transfer through pumps.
- ii) Hazardous wastes like waste dichromate solution, ETP Sludge, waste oil, spent solvent, distillation residue, process residue, spent catalyst / carbon, off specification products, date expired / discarded off specification drugs, spent organic solvents, Sludge from Treatment of Wastewater arising out of cleaning / disposal of Barrels / containers, Discarded Containers / Barrels / Liners, Contaminated with Hazardous waste Chemicals, Chemical Sludge from Wastewater treatment, Oil and Grease Skimming Residues and spent acid shall be disposed off to the cement plants for co-processing, reprocessing units or TSDFs after obtaining necessary Hazardous Waste Authorization from PPCC.
- iii) The company shall undertake waste minimization measures as below:
 - a) Metering and control of quantities of active ingredients to minimize waste.
 - b) Reuse of by-products from the process as raw materials or as raw material substitutes in other processes.
 - c) Use of automated filling to minimize spillage.
 - d) Use of Close Feed system into batch reactors.
 - e) Venting equipment through vapour recovery system.
 - f) Use of high-pressure hoses for equipment cleaning to reduce waste water generation.

VII. Green Belt

The green belt of 5-10 m width shall be developed in more than 33% of the total project area, mainly along the plant periphery, in downward wind direction, and along road sides etc. Selection of plant species shall be as per the CPCB guidelines in consultation with the Forest Department.

VIII. Safety and Human health issues

- i) Emergency preparedness plan based on the Hazard Identification and Risk Assessment (HIRA) and Disaster Management Plan shall be implemented.
- ii) The unit shall make the arrangement for protection of possible fire hazards during manufacturing process and material handling. Firefighting system shall be as per the norms.
- iii) The Project Proponent shall provide Personal Protection Equipment (PPE) as per the norms of Factory Act.
- iv) Training shall be imparted to all employees on safety and health aspects of chemicals handling. Pre-employment and routine periodical medical examinations for all employees shall be undertaken on regular basis.
- v) Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.
- vi) There shall be adequate space inside the plant premises earmarked for parking of vehicles for raw materials and finished products, and no parking to be allowed outside on public places.

IX. Corporate Environment Responsibility

- i) The company shall have a well laid down environmental policy duly approved by the Board of Directors. The environmental policy should prescribe standard operating procedures to have proper checks and balances and to bring into focus any infringements / deviation / violation of the environment / forest / wildlife norms / conditions. The company shall have defined system of reporting infringements / deviation / violation of the environmental / forest / wildlife norms / conditions and / or shareholders / stake holders. The copy of the board resolution in this regard shall be submitted as a part of half yearly compliance report.
- ii) A separate Environmental Cell both at the project and company head quarter level, with qualified personnel shall be set up under the control of senior Executive, who will directly report to the head of the organization.
- iii) Action plan for implementing EMP and environmental conditions along with responsibility matrix of the company shall be prepared and shall be duly approved by competent authority. The year wise funds earmarked for environmental protection measures shall be kept in separate account and not to be diverted for any other purpose. Year wise progress of implementation of action plan shall be reported to the SEIAA,

PPCC and Regional Office of MoEFCC along with the Six-Monthly Compliance Report.

iv) Self-environmental audit shall be conducted annually. Every three years third party environmental audit shall be carried out.

X. Miscellaneous

- i) The project proponent shall make public the environmental clearance granted for their project along with the environmental conditions and safeguards at their cost by prominently advertising it at least in two local newspapers of the District, of which one shall be in the vernacular language within seven days and in addition this shall also be displayed in the project proponent's website permanently.
- The copies of the environmental clearance shall be submitted by the project proponents to the Heads of local bodies, Panchayats and Municipal Bodies in addition to the relevant offices of the Government (Industries Department and PPCC) who in turn has to display the same for 30 days from the date of receipt.
- iii) No further expansion or modifications in the plant shall be carried out without prior Environmental Clearance from SEIAA / MoEFCC, as applicable. In case of any deviation or alterations in the project proposal from those submitted to the SEIAA for clearance, a fresh reference shall be made to the SEIAA / MoEFCC, as applicable, to assess the adequacy of the conditions imposed and to add additional environmental protection measures required, if any.
- iv) The project proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of monitored data on their website and update the same on half-yearly basis.
- v) The project proponent shall monitor the criteria pollutants level viz., PM₁₀, SO₂, NO_x (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the projects and display the same at a convenient location for disclosure to the public and put on the website of the company.
- vi) The project proponent shall submit six-monthly compliance report on the status of the compliance of the stipulated environmental conditions including results of monitored data in hard and soft copies on 1st June and 1st December of each calendar year in respect of the conditions stipulated in the Environmental Clearance issued to SEIAA, PPCC and Regional Office of CPCB and MoEFCC.
- vii) The project proponent shall submit six-monthly reports on the status of the compliance of the stipulated environmental conditions on the website of the Ministry of Environment, Forest and Climate Change at environment clearance portal.

- viii) The project proponent shall submit the Environmental Statement for each financial year in Form-V to the Puducherry Pollution Control Committee as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently and put on the website of the company.
- ix) The project proponent shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and start of production operation by the project.
- x) The project authorities must strictly adhere to the stipulations made by the Puducherry Pollution Control Committee and the U.T. Government.
- xi) Concealing factual data or submission of false/fabricated data may result in revocation of this environmental clearance and attract action under the provisions of Environment (Protection) Act, 1986.
- xii) The SEIAA may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.
- xiii) The SEIAA reserves the right to stipulate additional conditions if found necessary. The Company in a time bound manner shall implement these conditions.
- xiv) The Puducherry Pollution Control Committee and Regional Office of MoEFCC shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the Officer (s) of the PPCC / Regional Office of MoEFCC by furnishing the requisite data / information / monitoring reports whenever requested.
- xv) The above conditions shall be enforced, inter-alia under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 and the Public Liability Insurance Act, 1991 along with their amendments and Rules and any other orders passed by the Hon'ble Supreme Court of India / High Courts and any other Court of Law relating to the subject matter.
- xvi) Any appeal against this EC shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

XI. VALIDITY:

The validity of this Environmental Clearance is for Ten years from the date of issue of EC.

Copy to:-

- 1. The Secretary to Government (Environment), Chief Secretariat, Puducherry. 605 001.
- 2. The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD-cum-Office Complex, East Arjun Nagar, New Delhi 110032.
- 3. The Member Secretary, Puducherry Pollution Control Committee, 3rd Floor, PHB Building, Anna Nagar, Puducherry 605 005.
- 4. Regional Office, Ministry of Environment & Forest (SZ), Kendriya Sadan, IV floor, E&F wings, 17th Main Road, Koramangala II Block, Bangalore 560034.
- 5. Monitoring Cell, IA Division, Ministry of Environment & Forests, Paryavaran Bhavan, CGO Complex, New Delhi 110 003.
- 6. Standing Guard File.

* * *

Annexure - 2

SC Activ

To

Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2654100, Fax: +91 413 2655154

Date: 03.01.2023

The Member Secretary, Puducherry Pollution Control Committee, 3^{rd.} Floor, PHB Building, Anna Nagar, Pudhucherry-605005.

Dear sir,

Sub: Requesting for Air & Water Consent order - Renewal.

Ref:

- 1. Air Consent order No: 7528/PPCC/CTO(A)/OMK/PDY/JE/2021/1111 valid up to 31.01.2023 dated on 24.09.2021.
- Water Consent order No: 7528/PPCC/CTO(W)/OMK/PDY/JE/2021/1111A valid up to 31.01.2023 dated on 24.09.2021.

With reference to the above subject (1) (2)., We would like to inform you that we submitted online application of Air & Water Consent order for renewal on 31.12.2022. Herewith we are enclosing the online application form and Demand/Banker's Draft No. 504194 ICICI BANK (Name of Bank), dated 18.11.2022 for Rs. 78,200 (Rupees seventy-eight Thousand two hundred only) in favour of The Member Secretary PPCC (Puducherry Pollution Control Committee), Puducherry as fees payable under section 25 and 21 of the Act. Kindly issue the renewal of CTO.

Thanking you,

Yours faithfully,

For Solara Active Pharma Sciences Limited,

Chief Operations Officer

Enclosed: -

- The copy of online application for CTO Renewal.

- The original Demand Draft No: - 504194 dated 18.11.2022.

- The copy of ZLD PFD, Ibuprofen & Ibuprofen derivatives PFD, Water balance, List of Raw materials, Borewell license, Environmental Clearance, Form – V and Form – IV.

Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2654100. Fax: +91 413 2655154 21/06/2022

To

Member Secretary Pudhucherry Pollution Control Committee, 3 rd Floor, PHB Building, Anna Nagar, Pudhucherry -605005.

Dear Sir,

Sub: APPLICATION FOR CONSENT TO ESTABLISH / OPERATE / RENEWAL UNDER SECTION 25 OF WATER (PREVENTION & CONTROL OF POLLUTION) ACT 1974 / SECTION 21 OF AIR (PREVENTION & CONTROL OF POLLUTION) ACT, 1981

With reference to the above cited, we would like to inform that we applied online application for Consent To Establish (CTE) on 17.06.2022. we are enclosed the online filed application, necessary documents, and DD for CTE fees amount paid Rs. 71200 in the name of "The Member secretary PPCC" payable at Puducherry.

Kindly review our application and issue the CTE.

For Solara Active Pharma Science limited

M. Mohan

Chief Operations Officer

Enclosure:

- 1. Copy of online application for consent to establish / operate / renewal of water (prevention & control of pollution) act 1974 / Air (prevention & control of pollution) act 1981.
- 2. DD NO: 506342 dated 03.06.2022 Rs.71200/- ICICI Bank
- Copy of Form I, Prefeasibility report, Environmental Management Plan, Process description & process Flowchart of Ibuprofen, Process description & process Flowchart of ZLD system, Reactor & storage tank details, Air & water consent condition compliance report, List of raw materials, Hazardous waste disposal vendor details, EC, Noise level monitoring reports, AAQ monitoring reports, DG & stack emission reports, Test bore well reports, Ground water analysis reports and Raw, materials MSDS.

Annexure - 3

ZLD system Photograph

ETP plant Photograph

Ro System Photograph

Scrubber Photograph

Annexure - 3

SOLARA ACTIVE PHARMA SCEINCES LTD

SAFETY AUDIT REPORT

By

Introduction

 SOLARA Active Pharma Sciences, Located in Periayakalapet, Pondicherry PINCODE-605 502. In order to comply with the provisions of the Factories Act and Pondicherry Factories
 Rules, the organization engaged the services of M/ s Global Safety Studies (safety Training and Consulting Organization) Pondicherry to conduct a comprehensive Occupational Health and Safety Audit as per Guidelines of IS 14489.

The safety audit was conducted on 09.12.2022 by the following team:

AUDIT TEAM K.Vengatesan B.Tech, MBA, I Dip Nebosh, PGDHSE, Grad IOSH –UK Balasubramanium, DME, DIS D.Buvanesh, DPT, MBA, PGDHSE,CPSM

Due considerations were given for the existing safe guards in the plant.

The consultants wish to place on record their sincere thanks to the management and staff of The Solara Pharma for their excellent cooperation and participation in the study.

Date: 12.12.2022

K.VENGATESAN

Executive Summary:

The detailed EHS Evaluation was conducted on with the participation of SOLARA PHARMA

MANAGEMENT and Plant personnel on 09.12.2022. The team kicked off with initial evaluation of Management System and documentation. All activities were evaluated on different places of the plant, office facilities, Occupational Health Centre, material store areas. All the deviations and gapes in the management system were discussed in detail with the representatives and improvement measures were agreed both in management system requirements and implementation at plant. The evaluation was concluded with closeout meeting with SOLARA PHARMA Team and highlighted the issues.

Major Improvements:

- 1. Safety Policy displayed in different locations of plant.
- 2. Firefighting training conducted with practical.
- 3. Segregation of Vehicle and pedestrian marking maintained well.
- 4. Occupational health Centre facilities checked and found in order & Ambulance van PY 05 B 1990 was checked and found in order.

Major areas for improvement:

Following are some of the major areas for improvement.

- 1. Emergency exits are provided with breakable glasses and a hammer to break in case of emergency. This may not be adequate for a proper rescue or escape. This provision shall be reviewed and replaced the door with easy accessible door.
- Any hot work in areas where highly flammable substances are handled shall be avoided and alternate methods thought of. This was explained in detail during the audit. BELZONA Epoxy Composites coating can be used to arrest the leakage in the process equipment during emergency situation to avoid hot work.
- 3. Fire blankets with standard quality needs to be procured with test certificates and used for hot work activities. Separate storage area needs to be allocated for placing the fire blankets and the fire extinguishers.
- 4. **Competent welder** need to be used for hot work and competent supervisor need to be present during work activity.
- 5. **Fire watcher/Fire Marshal Roles should be clearly defined and effective training** to be done. Need to provide additional fire watcher based on work activity.
- 6. Maintenance activity to be carried out under the supervision of respective department personnel.

- 7. Last minute risk assessment (LMRA) to be carried out before executing the job.
- 8. Contractors equipment(welding machine, gas cutting set, drilling and grinding machines, pneumatic/ electrical hammers, other power tools, hand tools etc. shall be periodically examined in detail by competent person from company side and certified before use
- Display of the properties as excerpts from MSDS is suggested. Particularly, physical and chemical properties, handling and storage(including PPE), firefighting measures, spill handling measures and first aid measures

Conclusion:

By being evident of general EHS compliance at plant, Management need to take appropriate action to prevent workplace accidents and improve health of employees, Management need to improve safety culture of organizations and concentrate on safety Documentations, Lessons learnt to be developed for all incidents so that accident will be prevented.

We appreciate the efforts of SOLARA MANAGEMENT team for their contribution to this evaluation and their transparent explanation of issues. The evaluation team has reflected outcome of the exercise for further enhancement of current EHS practices at the plant. The details of the each finding were discussed thoroughly and corrective actions were explained to theparticipants.

Safety Audit Goals

Audits are normally designed to achieve one or more of the following goals

- 1. To provide the auditee with an opportunity to assess its own OS & H system against standards and identify areas for improvement.
- 2. To determine the conformity of the implemented OS & H systems with specified requirements and identify areas for improvement.
- 3. To meet regulatory requirements.

Audit Objectives

Occupational Safety and Health (OS & H) audits are conducted

- 1. To carry out a systematic critical appraisal of all potential hazards involving personnel, plant, services and operational methods.
- 2. To ensure that OS & H system fully satisfy the legal requirements and those of company's written safety policies, objectives and progress.

Audit Methodology

- 1. Appraisal of Audit procedures to the concerned executives.
- 2. Familiarization visit to various sections of the unit.
- 3. Visit to various sections for in- depth study of hazard potential.
- 4. Study of the maintenance system of process vessels, machines, pipes, equipments, buildings etc.,
- 5. Interaction with various levels of employees.
- 6. Perusal of documents relating to OS & H.
- 7. Appraisal of major observations to the functional heads who are decision makers to improve SHE system.

Methodology

Following Methodologies were followed to complete Safety Audit and IS 14489 Referred.

Document review

All applicable documents which includes Work permit system, Standard Operating Procedures, MSDS(Material Safety Data sheet), Health monitoring report, Standard operating procedures, Emergency plan, Mock drill report, Safety Committee meetings, Equipment inspections, Accident report, Training records, Firefighting equipment inspection records, Contractor selection procedures,

Consulting with Employees

Interviews were conducted with range of employees which included senior management, HR Managers, Safety Manager and Engineers, Production Manager, Maintenance team, Plant personnel, QC, Fire marshal and workers, the purpose of the interviews was to identify the effectiveness of the existing control measures and safety awareness among the workforce.

Observations/Plant inspection

The purpose of the observations was to physically verify the implementation of safetymeasures and to establish if the workforce level of safety awareness, Inspection of various locations includes

production Vessel No PO 8SSR093 and the surrounding areas inspected, Process line valves, Occupational health Centre facilities, Ambulance, canteen and office areas.

Areas covered under audit

- 01. Safety policy
- 02. Organization Setup
- 03. Safety Education and Training
- 04. Employees participation in OS & H
- 05. Safety Manual & Rules
- 06. Compliance with Statutory Requirements
- 07. New Equipment Inspection
- 08. Risk assessment including hazard identification
- 09. Plant safety inspections
- 10. Health and safety improvements plans / targets
- 11. First aid facilities Occupational Health Centre
- 12. Personal protective equipment
- 13. House keeping
- 14. Machine and general area guarding
- 15. Electrical and personal safe guarding
- 16. Ventilation, illumination and noise
- 17. Work environment monitoring system
- 18. Occupational Health
- 19. Safe operating procedures
- 20. Work permit system
- **21.** Fire prevention, protection and fighting system
- 22. Emergency preparedness plan
- 23. Process / plant modification procedures
- 24. Hazardous waste storage and disposal
- 25. Safety in storage and warehousing
- 26. Contractor safety system
- 27. Utilities

Documents Perused

- The following records are pursued during the audit.
- 01. OS & H Policy.
- 02. Safety Department's organization chart
- 03. Contractor selection procedure.
- 04. Safety promotional & motivational measures.
- 05. Training records on safety & Fire safety Practical session.
- 06. Record of Electrical inspections. 07. Accident investigation reports
- 10. Safe operating procedures.
- 11. Record of work permits (Hot work permit)
- 12. Record of Safety Campaigns.
- 13. Maintenance and testing records of the firefighting Equipment. 15. Occupational Health Centre/First Aid Details
- 16. Medical records of employees.
- 17. Records of industrial hygiene surveys.
- 18. Material safety data sheets
- 19. On-site emergency plan and record of Mock Drills
- 20. Communication Systems adopted in the unit

Plant Observations:

- 1. Vessel No PO 8SSR093 and the surrounding areas inspected.
- 2. Emergency stop switches were near the vessels
- 3. Flameproof fittings are ensured and found in order
- 4. Pipeline color code is displayed as per IS 2379:1990
- 5. Ambulance van PY 05 B 1990 was checked and found in order
- 6. Occupational health centre facilities checked and found in order
- 7. Four emergency internal numbers are available
- 8. Contractors' selection screening process is in place. Need to check competency of contractor personnel.
- 9. Document CWI-SASD-022 for hot work permit is available

- 10. Emergency preparedness and response plan is available
- 11. Permit to work no 703/ 30-11-2022 reviewed and all columns found filled
- 12. Fire exits and fire hydrant points were blocked and noticed that Pharma bagged material kept without identification in 1st floor of production unit.
- 13. Incompetent welder observed need to be replaced.
- 14. Substandard fire blankets used (Tarpaulin) for hot work.
- 15. Poor stargaze of fire safety materials observed it lead to contaminations.
- 16. MSDS of Hexane not displayed in plant. Few employees unaware of Chemical properties.
- 17. Restricted entry system need to be implemented in critical production unit.
- 18. Fire extinguisher kept in ground in production unit.

SUMMARY OF RECOMMENDATIONS:

The recommendations have been embedded in the previous section (Observations & Discussions) along with the observations and the discussions. The summary of the important recommendations are once again being presented hear for the sake of convenience. For complete justification, the previous section, "Observations & Discussions" may be referred.

Safety Policy

- 1. The safety policy available and displayed in entrance and other locations of plant.
- 2. The safety policy should also Communicated to all employees including contractors. Safety Policy should be communicated to visitors through visitor induction trainings.

Safety & Health Organization

- 3. Plant safety department is headed by Safety-In-charge having 25 years' experience in the plant. Safety head reports to Factory Manager. Fire services and OHS are under him.
- 4. Management need to conduct regular safety inspection and management walkthrough.

Safety Committee

5. The safety committee meetings conducted on regular basis, and document maintained. Need to conduct meeting with contractor for improve health and Safety Performance.

Fire Safety:

- 6. Hot work permit system need to be implemented effectively and all control measures need to be followed and shift change procedures need to be included in permit.
- 7. Only competent Welder only allowed for hot work in process unit.
- 8. Appropriate PPE including Fire resistant Suit need to be provided.
- 9. SMP (Standard Maintenance procedure for hot work) need to be developed and implemented. (NO SOP Available for Process plant welding activity)
- 10. Standard quality fire blankets need to be purchased (Never use Tarpaulin for Hot work).
- 11. Continuous air monitoring need to be carried out for hot work in process unit.
- 12. Competent fire watcher need to be appointed for hot work.
- 13. Pre use inspection of hot work equipment including welding machine and Tools.
- 14. Separate storage area needs to be allocated for placing the fire blankets and the fire extinguishers.
- 15. It should be ensured that effectiveness emergency Plan & Need to conduct fire mock drill. The company should enforce the No smoking policy across its sites to prevent/reduce any fire risks.
- 16. Fire hydrant system to be monitored.
- 17. Fire alarm system installed and communicate to all employees.

Chemical Safety

- 18. MSDS for HEXANE to be posted in the process area
- 19. Chemical Safety Training to be provided.
- 20. Personal Hygiene procedures and techniques to be followed.

Housekeeping & Material arrangement.

- 21. Barricading of the areas where maintenance work is carried out should be done.
- 22. Segregation of material and proper identification labels to be placed and fire pints shall not be blocked.
- 23. All the walk ways should be free from obstructions.
- 24. The floors should be kept free of spillages and slippery materials.

Hazard Identification and Control

- 25. Tool box talks should be provided for the workforce by the supervisor.
- 26. Pre task checklist for hot work need to be developed and followed.
- 27. It should be ensured that all the risk controls will be implemented.

Safe Operating Procedures

- 28. SOP need to be developed for all the Contractors activities.
- 29. List of standard operating procedure for all operations should be displayed in the respective areas.
- 30. It may be ensured that the details of all the SOPs are strictly followed.

Work Permit System

- 31. Training on Work permit system to be conducted for all work activities.(General work, Hot work, Height work and Confined space entry)
- 32. Strict actions should be taken when persons are found to breach the permit to work system.
- 33. Safety department should have a check over the permit to work system to ensure that all the hazards of the hazardous jobs have been well identified.

Personal Protective Equipment

- 34. Need to provide standard quality PPE to all employees including contractors.
- 35. It may be ensured that all the workers entering the high speed machines do not wear loose clothing & Long hair.
- 36. The adequate protective devices should be kept handy whenever the maintenance work is carried out in hazardous areas.
- 37. Strict vigilance should be kept about the use of PPE by the contractors' workers.
- 38. PPE matrix need to be followed.

Mobile equipment and vehicular traffic & Material Handling

- 39. All the vehicles should be provided with reversing horns and visual signals, which should be used by the drivers.
- 40. Blind spot mirror to be provided to maintain safe vehicle movement.

Machine Guarding & Maintenance

41. Machinery inspection to be carried out and all the safety devices to be installed.

- 42. Machine guard provided to all moving machinery & Machine guards of all the pumps should be checked regularly.
- 43. Maintenance for the Equipment's in (AMC) should be actively monitored by the in-house staffs.
- 44. Behavior based safety training program to be conducted for developing the safety culture.
- 45. Contractor equipment's to be thoroughly inspected and labelled by competent person.

Building & Design

- 46. Stability certificate to be carried out by competent person. Suggested to review periodically as there are buildings with concrete sealing are damaged.
- 47. Fire exit door and Fire exit stair cases need to be checked for safe access during emergency.

Transportation by Road

- 48. The management should ensure that the all requirements of Central Motor Vehicle Rules are met with before loading or unloading the materials. & High level of dust observed in site, it should be controlled.
- 49. Need to Conduct Health monitoring and eye test for driver on regular basis (All lifting vehicles and other vehicles).

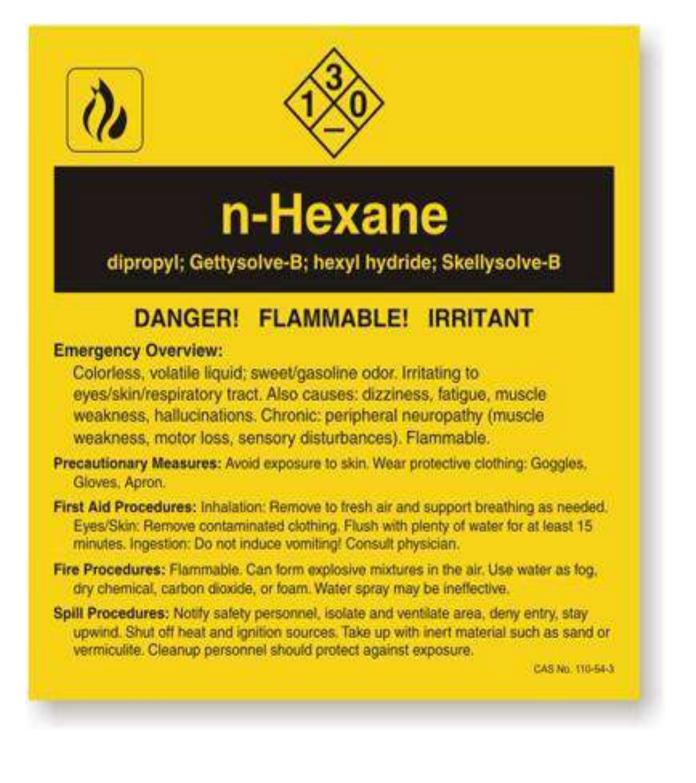
Training

- 50. Provide induction training for all the contactors and visitors.
- 51. Refresher training should be given for all the employees by considering the skill matrix training record.
- 52. Behavior based safety training program to be conducted for developing the safety culture.
- 53. Job specific training should be given for the in-house employees and the contractors.
- 54. Contractor workers competency should be verified by the concerned department heads.
- 55. Hazardous area classification awareness to be given.

SAFETY DOCUMENTATION

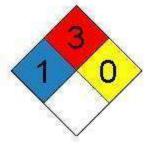
The following Documents to be maintained and Updated Regular basis.

- 1. Plant organization chart (Workplace Safety & Health)
- 2. Workplace Safety & Health policy statement
- 3. Management System Manual (Safety Manual)
- 4. Duties & responsibilities / job descriptions
- 5. Risk Assessment Records
- 6. Record of Safe Work Procedure
- 7. List of main and subcontractors' details & qualified personnel with certificate
- 8. Records/Evidence of safety training 9. Safety committee meetings reports.
- 10. Accident investigation reports / records
- 11. Permit-to-work system
- 12. Personal protective equipment issue records
- 13. Safety inspection checklists, registers and other records of inspections carried out.
- 14. Statutory test certificates of site machinery and equipment
- 15. Machinery preventive maintenance records
- 16. Certificate of competency and authorization of machinery operators
- **17. Standard testing Procedures.**
- 18. Safety Data Sheet (SDS)
- **19. Emergency Plan & Mock drill reports**
- 20. Occupational Health Programmes & records
- 21. Previous Safety Audit Reports and Action Plans
- 22. Medical reports
- 23. Internal and External communication reports
- 24. Employees competency records
- 25. Skill matrix and training matrix


(All the documents shall be Maintained and updated)

List of documents need to be prepared

ADDITIONAL INFORMATIONS


Chemical Information

Hexane (n-hexane)

CAS 110-54-3 UN 1208 GUIDE 128 - Flammable liquids (non-polar / water-immiscible)

Colorless liquid; gasoline-like odor

NFPA Information

Health (Blue): 1 Slightly Hazardous Fire (Red): 3 Flash Point < 100°F Instability (Yellow): 0 Stable

IS 15381: Fire Blanket BS

EN 1869

FI

For Global Safety Studies,,

K.Vengatesan B.Tech, MBA, I Dip Nebosh, DIS, PDRSM, Grad IOSH -UK Director and Safety Consultant Global Safety studies (An ISO 9001-2015 Certified Safety Training and Consulting Organization) CITY PLAZA, 209/5A, BALAJI NAGAR, NH 45A, VILLIANUR MAIN ROAD, OULGARET, MORE SUPERMART UPSTAIRS, Puducherry, 605010. Contact: 0413-2913500, +91-9043445500 & +91-8525017060

WEBSITE: www.globalsafety.org.in www.globalsafetyservices.org

Annexure - 5

TC-5589

\$ CML

6

CML .

.

SML +

CHI+ CHI+

CML ... CML . CML .. CML .

CML = CML +

CML . CML . CML . CML . CML . CML . CML .

CML

3

CML . CML Phone: 044-22323163, 22311034

42179490. 42179491 Chennai mettex lab private lim

Jothi Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032.

	station and the state of the st			
	TEST REPORT	Page No. 1 of 1		
ISSUED T	O : M/s. Solara Active Pharma Sciences Ltd, Periyakalapet,	T.C Date :25.05.2023		
	Puducherry – 605014.	T.C No :CML/23-24/14944		
Party's Ref	: SRF date: 16.05.2023	Date of Receipt: 16.05.2023		
Lab No	: 24014065	Test Completed on:23.05.2023		
Sample De (as stated by cr	scription: Ambient Air Quality Monitoring – Lo	ocation: Near ETP Area		
Date of Sar	mpling: 15.05.2023- 10.00 am to 16.05.2023- 1	10.00 am		

Ambient Temperature: Min. 30 °C & Max. 37 °C

CML

Σ

0

ε

E M

M NO 6

Σ

S

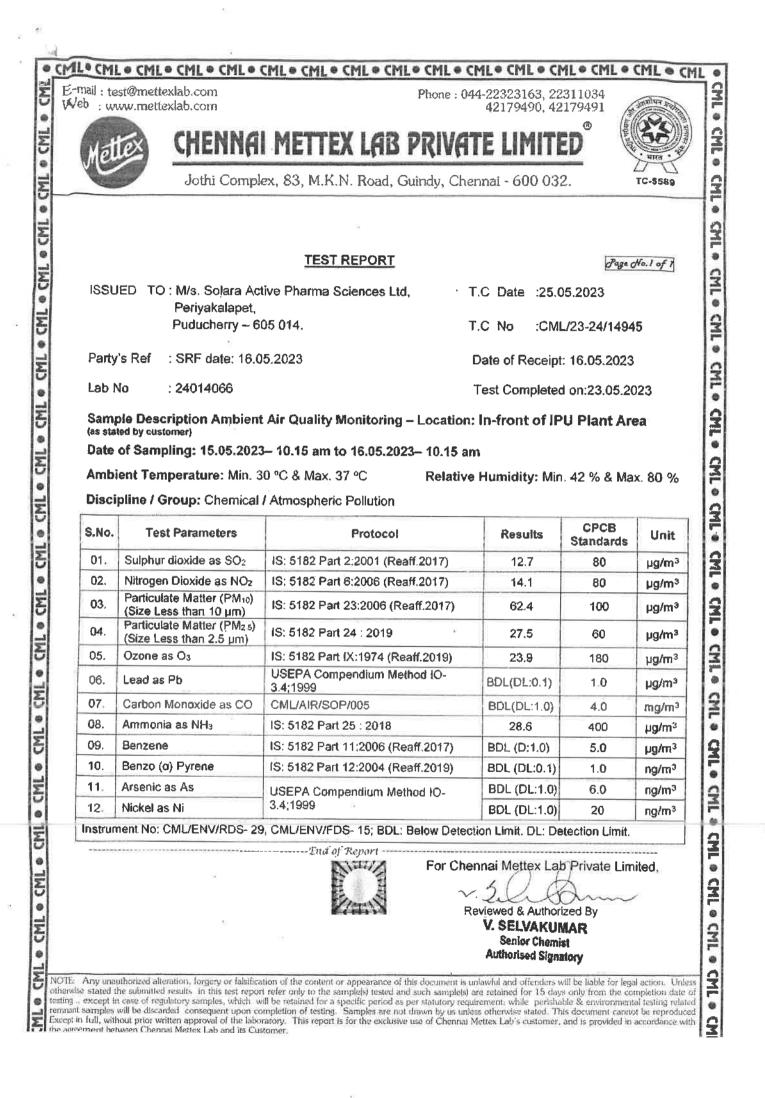
E-mail : test@mettexlab.com

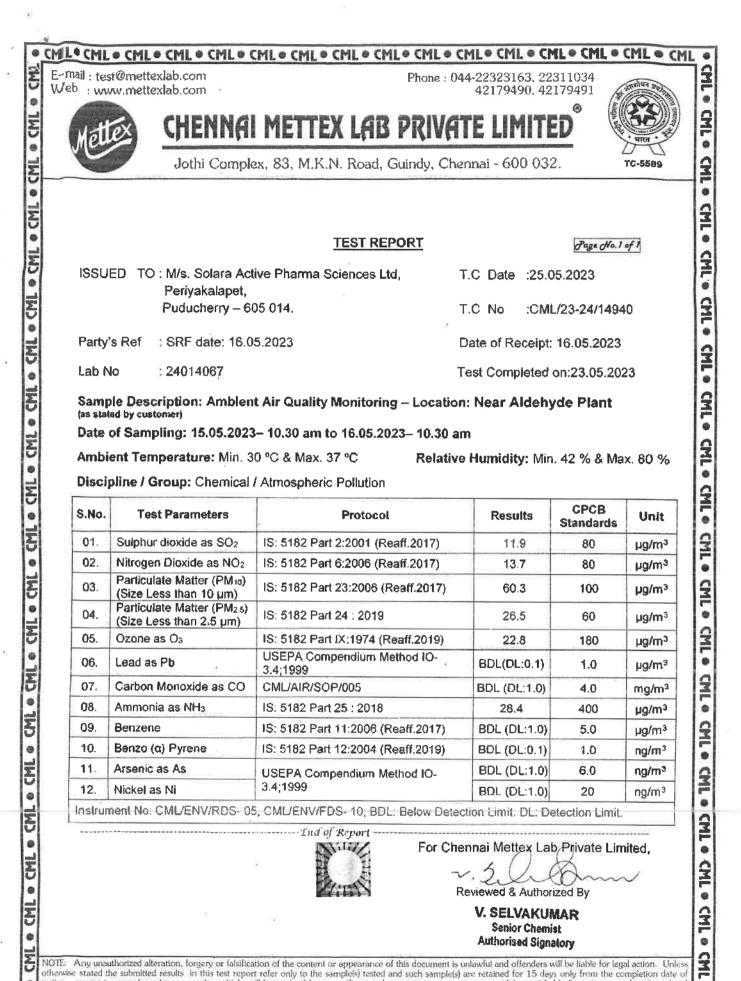
Web : www.mettexlab.com

Relative Humidity: Min. 42 % & Max. 80 %

Discipline / Group: Chemical / Atmospheric Pollution

S.No.	Test Parameters	Protocol	Results	CPCB Standards	Unit
01.	Sulphur dioxide as SO ₂	IS: 5182 Part 2:2001 (Reaff.2017)	11.8	80	µg/m³
02.	Nitrogen Dioxide as NO2	IS: 5182 Part 6:2006 (Reaff.2017)	12.5	80	µg/m³
03.	Particulate Matter (PM ₁₀) (Size Less than 10 µm)	IS: 5182 Part 23:2006 (Reaff.2017)	46.9	100	µg/m ³
04.	Particulate Matter (PM25) (Size Less than 2.5 µm)	CML/AIR/SOP/22	21.3	60	µg/m³
05.	Ozone as O ₃	IS: 5182 Part IX:1974 (Reaff.2019)	23,9	180	µg/m³
06.	Lead as Pb	USEPA Compendium Method IO- 3.4;1999	BDL(DL:0.1)	1.0	µg/m³
07.	Carbon Monoxide as CO	IS: 5182 Part 10:1999 (Reaff.2019)	BDL(DL:1.0)	4.0	mg/m³
08.	Ammonia as NH3	CML/AIR/SOP/07	26.7	400	µg/m ³
09.	Benzene	IS: 5182 Part 11:2006 (Reaff.2017)	BDL (DL:1.0)	5.0	µg/m ³
10.	Benzo (a) Pyrene	IS: 5182 Part 12:2004 (Reaff.2019)	BDL (DL:0.1)	1.0	ng/m ³
11	Arsenic as As	USEPA Compendium Method IO-	BDL (DL:1.0)	6.0	ng/m ³
12.	Nickel as Ni	3.4;1999	BDL (DL:1.0)	20	ng/m ³

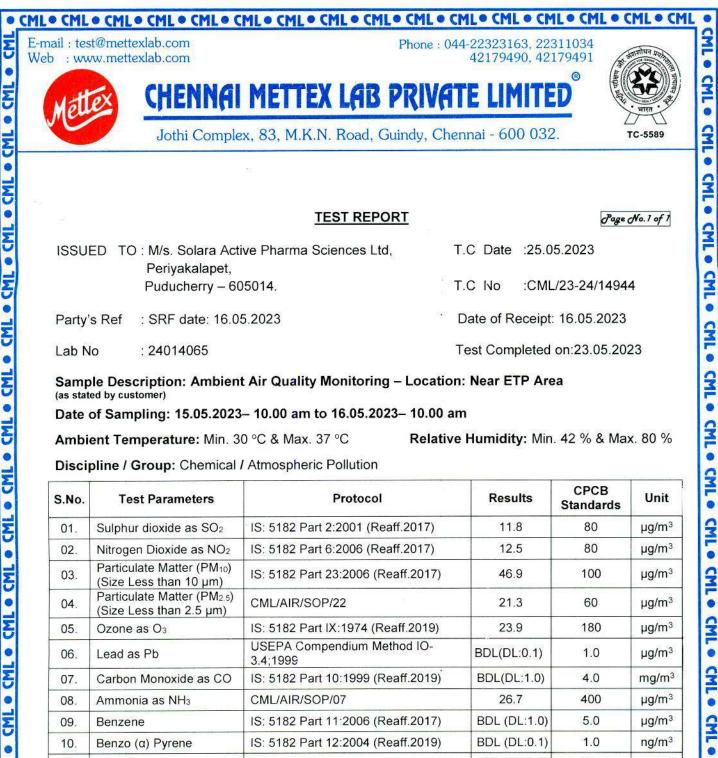

CML/ENV/RDS-18, CML/ENV/FDS-02; BDL: Below Detection Limit. DL: Detection Limit.


Ind of Report

For Chennai Mettex Lab Private Limited, Reviewed & Authorized By V. SELVAKUMAR

Senior Chemist Authorised Signatory

NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing , except in case of regulatory samples, which will be retained for a specific period as per statutory requirement, while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.



NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless Note: Any unaminated and action, longery or tastification of the content or appearance of this document is unawiul and offenders will be liable for legal action. Onliess otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing ... except in case of regulatory samples, which will be retained for a specific particle and such sample(s) testing testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.

• 3

-63

IS: 5182 Part 12:2004 (Reaff.2019) Benzo (a) Pyrene Arsenic as As USEPA Compendium Method IO-3.4;1999 Instrument No: CML/ENV/RDS- 18, CML/ENV/FDS- 02; BDL: Below Detection Limit. DL: Detection Limit. ----- End of Report ------

10.

11.

12.

Nickel as Ni

• E

0

E

E

0

ξ

0

E

0

Σ

Reviewed & Authorized By

For Chennai Mettex Lab Private Limited,

BDL (DL:0.1)

BDL (DL:1.0)

BDL (DL:1.0)

1.0

6.0

20

ng/m³

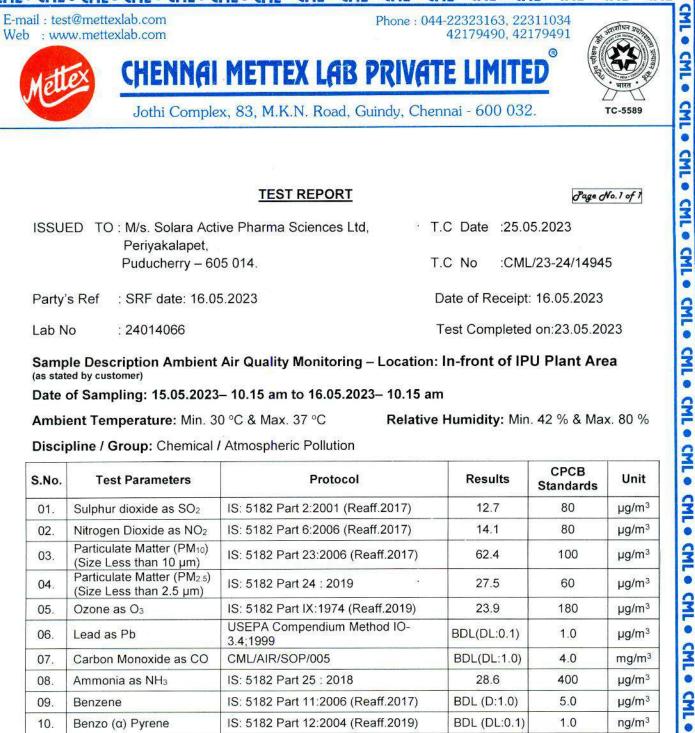
ng/m³

na/m³

CML .

CML ..

CML .


CML .

CML

. 2

V. SELVAKUMAR Senior Chemist Authorised Signatory

NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing , except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with Chennai Mettex Lab and its Customer

δ

E

• CML

E

• CML

THU

M

W

E

E S

I B

0

UM

0

E

0

W

•

UML

0 E

0

E

E

B

Σ

10.

11.

12.

Benzo (a) Pyrene

Arsenic as As

Nickel as Ni

Instrument No: CML/ENV/RDS- 29, CML/ENV/FDS- 15; BDL: Below Detection Limit. DL: Detection Limit. -----End of Report ---

IS: 5182 Part 12:2004 (Reaff.2019)

USEPA Compendium Method IO-

3.4:1999

For Chennai Mettex Lab Private Limited,

BDL (DL:0.1)

BDL (DL:1.0)

BDL (DL:1.0)

1.0

6.0

20

CML .

R

0

CML .

CML .

CML .

3

Reviewed & Authorized By

V. SELVAKUMAR **Senior Chemist Authorised Signatory**

NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing ., except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.

CML . CML ng/m³ ng/m³ ng/m³

Instrument No: CML/ENV/RDS- 05, CML/ENV/FDS- 10; BDL: Below Detection Limit. DL: Detection Limit.

-----End of Report -----

THU

E

Ξ

Ξ

For Chennai Mettex Lab Private Limited,

CML .

CML .

CML

.

3

Reviewed & Authorized By V. SELVAKUMAR **Senior Chemist** Authorised Signatory

NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unles otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing , except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.

SI. No.		Stack Details				Unit
01	Diameter			1.5	5	m ²
02	Temperature			11	9	°C
03	Velocity			7.8	3	m/sec
04	Volume of Gas Discharged		_	372	96	Nm ³ /hr
SI. No.	Test Parameters	Test Method		Resu	ults	Unit
01	Particulate Matter	IS 11255 Part 1-1985 (RA	(2019)	125	.6	mg/Nm ³
02	Sulphur-di-oxide (SO ₂)			BDL (D	L: 3.0)	mg/Nm ³
03	Oxides of Nitrogen (NOx)				0	mg/Nm ³
04	Carbon Monoxide as CO	CML/STACK/SOP/06		123		mg/Nm ³
05	Carbon dioxide as CO2	1		8.2 12.3		%
06	Oxygen as O ₂					%
As per M	strument ID.No: CML/ENV/SI oEFCC Notification Environm	ent (Protection) Amendmer Particulate Matter		2013 Stan	5A8692 61	e num Limits
Steam ge	generation capacity (ton/hour) Limits Agro Based		Paran	neters	Agro E	Based Fuels
less than 2	2 Ton	500 mg/Nm ³	S	D ₂	2	-
2 to less th	nan 10 Ton	250 mg/Nm ³	N	Эx		-
10 Ton an	d above	250 mg/Nm ³				

• IWU

CML • CML

B

JMC •

- UL

• CML

B

0

Σ

3

For Chennai Mettex Lab Private Limited,

3

CML . CML .

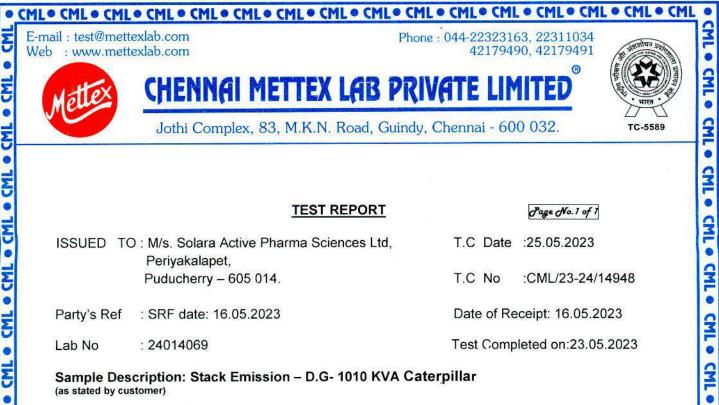
CML .

CMLO

CML .

CMLO

CML • CML •


M

• CM

Reviewed & Authorized By V. SELVAKUMAR

Senior Chemist Authorised Signatory

NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing ., except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.

Date of Sampling: 15.05.2023

J

• CML •

• CML

• CML

• CML

• CML

E

0

Σ 0

δ

Z

Discipline / Group: Chemical / Atmospheric Pollution Sampling Plan & Procedure: CML/STACK/SOP/08

SI. No.		Stack Details			Unit
01	Stack Diameter		25		cm
02	Temperature		336		°C
03	Velocity		33.4		m/sec
04	Volume of Gas Discharged		2874	1	Nm ³ /hr
SI. No.	Test Parameters	Test Method	Results	CPCB Norms	Unit
01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	57.7	75	mg/Nm ³
02	Sulphur-di-oxide (SO ₂)		BDL (DL: 3.0)		ppmv
03	Oxides of Nitrogen (NOx)		389	710	ppmv
04	Non-Methane Hydrocarbon	CML/STACK/SOP/05	71	100	mg/Nm ³
05	Carbon Monoxide as CO		120	150	mg/Nm ³
06	Carbon dioxide as CO2		7.2		%
07	Oxygen as O ₂		11.3	122	%

Note: Instrument ID.No: CML/ENV/SMK/07

End of Report -----

Reviewed & Authorized By

V. SELVAKUMAR Senior Chemist Authorised Signatory

NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing , except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Metter. Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.

For Chennai Mettex Lab Private Limited,

3

.

CML .

CML 0

> 3 0

CML .

CML .


CML .

CML • CML •

CML .

CML .

CML

01	Stack Diameter		25	25	cm
02	Temperature		368	368	°C
03	Velocity		23.6	22.8	m/sec
04	Volume of Gas Discharged		1926	1866	Nm ³ /hr
SI. No.	Test Parameters	Test Method	Results	CPCB Norms	Unit
01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	54.5	75	mg/Nm ³
02	Sulphur-di-oxide (SO ₂)		BDL (DL: 3.0)	220	ppmv
03	Oxides of Nitrogen (NOx)		289	710	ppmv
04	Non-Methane Hydrocarbon	CML/STACK/SOP/05	90	100	mg/Nm ³
05	Carbon Monoxide as CO		102	150	mg/Nm ³
06	Carbon dioxide as CO2		9.5	220	%
07	Oxygen as O ₂		9.6		%

CML • CML

• CML

• CML

JHU .

• CML

JE

δ

E

------ Tnd of Report -----

For Chennai Mettex Lab Private Limited,

Reviewed & Authorized By

3

M

3

3

CML .

CML .

CML .

CML . CML .

CML

0 3

V. SELVAKUMAR

Senior Chemist Authorised Signatory

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless NOTE: otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing , except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.

SI. No.	Stac	k Details	Chimney-1	Chimney- 2	Unit
01	Stack Diameter		25	25	cm
02	Temperature		348	348	°C
03	Velocity		23.4	23.4	m/sec
04	Volume of Gas Discharged		1971	1971	Nm ³ /hr
SI. No.	Test Parameters	Test Method	Results	CPCB Norms	Unit
01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	46.6	75	mg/Nm ³
02	Sulphur-di-oxide (SO ₂)		BDL (DL: 3.0)		ppmv
03	Oxides of Nitrogen (NOx)		340	710	ppmv
04	Non-Methane Hydrocarbon	CML/STACK/SOP/05	87	100	mg/Nm ³
05	Carbon Monoxide as CO		115	150	mg/Nm ³
06	Carbon dioxide as CO2		7	0.737	%
07	Oxygen as O ₂		11.5		%

E

UM

B

• CML

E C

- CML

J

0

L M

ξ

Ξ

------ End of Report -----

For Chernai Mettex Lab Private Limited,

Reviewed & Authorized By

V. SELVAKUMAR Senior Chemist Authorised Signatory

NOTE: -Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing ., except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.

Carbon Monoxide as CO

Note: Instrument ID.No: CML/ENV/SMK/07

Carbon dioxide as CO2

Oxygen as O2

05

06

07

W

.

E

Σ

Σ

CML/STACK/SOP/05

For Chennai Mettex Lab Private Limited,

111

7.3

11.2

150

Reviewed & Authorized By

V. SELVAKUMAR Senior Chemist Authorised Signatory

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless NOTE otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing ., except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.

mg/Nm³ mg/Nm³ % %

CML .

CML . CML . CML . CML .

CML

.

			ML • CML • CML • CML • CML • C	ALP ALL AL		CITE O CITI
		st@mettexlab.com vw.mettexlab.com	Phone : 04	4-22323163, 22 42179490, 42	311034 179491	त्राज्ञोधन ग्रम्भाग अन्य प्रसाद के स्थान
	Mē	the CHENNAL	i mettex lab priva	TE LIMITE	D	333 IN 199
	ME	Jothi Comple	ex, 83, M.K.N. Road, Guindy, Che	ennai - 600 032	2.	TC-5589
		-	TEST REPORT		Page	No. 1 of 1
				.C Date : 21.0	M 2023	
	ISSUE	ED TO : M/s. Solara Activ Periyakalapet,	ve Pharma Sciences Liu,	.0 Date . 21.0	7.2020	
		Puducherry – 60	5014. T	.C No :CML	/23-24/5294	
I	Party's	s Ref : SRF Date: 16.0-	4.2023	Date of Receipt:	16.04.2023	
	, Lab N			Fest Completed	on: 21.04.20	23
-	Samp	le Description: Ambient	Air Quality Monitoring Location	n: Near ETP Are	ea	
		ed by customer)				
1	Date	of Sampling: 15.04.2023	- 10.00 am to 16.04.2023 - 10.00 a	im		
	Ambi	ent Temperature: Min. 29	9 °C & Max. 35 °C Relative	Humidity: Min	. 43 % & Max	x. 83 %
						•
	DISCI	pline / Group: Chemical /	Atmospheric Poliation			1
5	S.No.	Test Parameters	Protocol	Results	CPCB Standards	Unit
ľ	01.	Sulphur dioxide as SO2	IS: 5182 Part 2:2001 (Reaff.2017)	11.3	80	µg/m³
	02.	Nitrogen Dioxide as NO ₂	IS: 5182 Part 6:2006 (Reaff.2017)	13.9	80	µg/m³
	03.	Particulate Matter (PM ₁₀) (Size Less than 10 µm)	IS: 5182 Part 23:2006 (Reaff.2017)	46.8	100	µg/m³
	04.	Particulate Matter (PM25) (Size Less than 2.5 µm)	IS: 5182 Part 24 : 2019	21.5	60	µg/m³
	05.	Ozone as O3	IS: 5182 Part IX:1974 (Reaff.2019)	22.9	180	µg/m³
	05. 06.		IS: 5182 Part IX:1974 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999	22.9 BDL(DL:0.1)	180 1.0	hð\w ₃ hð\w ₃
		Ozone as O ₃	USEPA Compendium Method IO-		1.0	µg/m³ mg/m³
	06.	Ozone as O ₃ Lead as Pb	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018	BDL(DL:0.1) BDL(DL:1.0) 29.4	1.0 4.0 400	μg/m ³ mg/m ³ μg/m ³
	06. 07.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017)	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0)	1.0 4.0 400 5.0	μg/m ³ mg/m ³ μg/m ³ μg/m ³
	06. 07. 08. 09. 10.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019)	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:0.1)	1.0 4.0 400 5.0 1.0	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³
	06. 07. 08. 09. 10. 11.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO-	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0)	1.0 4.0 400 5.0 1.0 6.0	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³
	06. 07. 08. 09. 10. 11. 12.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0)	1.0 4.0 400 5.0 1.0 6.0 20	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³ ng/m ³
	06. 07. 08. 09. 10. 11. 12.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 B, CML/ENV/FDS- 02; BDL: Below Dete	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0) BDL (DL:1.0)	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit.	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³
	06. 07. 08. 09. 10. 11. 12.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 3, CML/ENV/FDS- 02; BDL: Below Dete 	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0) BDL (DL:1.0)	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit.	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³
	06. 07. 08. 09. 10. 11. 12.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 3, CML/ENV/FDS- 02; BDL: Below Dete 	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0) BDL (DL:1.0)	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit.	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³
	06. 07. 08. 09. 10. 11. 12.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 3, CML/ENV/FDS- 02; BDL: Below Dete 	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0) BDL (DL:1.0)	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit.	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³
	06. 07. 08. 09. 10. 11. 12.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 B, CML/ENV/FDS- 02; BDL: Below Dete 	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0) Ction Limit. DL: D ennai Mettex La	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit. ab Private Lin	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³
	06. 07. 08. 09. 10. 11. 12.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 B, CML/ENV/FDS- 02; BDL: Below Dete 	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0) Ction Limit. DL: D ennai Mettex La Accorrection Reviewed & Author P. KAVITH	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit.	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³
	06. 07. 08. 09. 10. 11. 12.	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 B, CML/ENV/FDS- 02; BDL: Below Dete 	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:0.1) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0) Ction Limit. DL: D ennai Mettex La Accu- Reviewed & Autho P. KAVITH Technical Man	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit.	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³
	06. 07. 08. 09. 10. 11. 12. Instrur	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni nent No: CML/ENV/RDS- 48	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 3, CML/ENV/FDS- 02; BDL: Below Deter <i>End of Report</i>	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:0.1) BDL (DL:0.1) BDL (DL:1.0) Ction Limit. DL: D ennai Mettex La Actu- Reviewed & Author P. KAVITH Technical Man	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit.	μg/m ³ mg/m ³ μg/m ³ ng/m ³ ng/m ³ ng/m ³
NOTE	06. 07. 08. 09. 10. 11. 12. Instrur	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni nent No: CML/ENV/RDS- 48	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 3, CML/ENV/FDS- 02; BDL: Below Dete <i>End of Report</i> For Che	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0) Ction Limit. DL: D ennai Mettex La Actor P. KAVITH Technical Man Authorised Sign	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit. ab Private Lin vrized By	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³ ng/m ³
NOTE otherwise resting .	06. 07. 08. 09. 10. 11. 12. Instrur	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni nent No: CML/ENV/RDS- 48 Nickel as Ni nent No: CML/ENV/RDS- 48	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 B, CML/ENV/FDS- 02; BDL: Below Deter <i>End of Report</i> For Che	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0) Ction Limit. DL: D ennai Mettex La Authorised & Author P. KAVITH Technical Man Authorised Sign	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit. ab Private Lin Ab Private	μg/m ³ mg/m ³ μg/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³ ng/m ³
NOTE: otherwise resting remnant Except in he agree	06. 07. 08. 09. 10. 11. 12. Instrur Any unz e stated except samples i full, wit grament be	Ozone as O ₃ Lead as Pb Carbon Monoxide as CO Ammonia as NH ₃ Benzene Benzo (α) Pyrene Arsenic as As Nickel as Ni ment No: CML/ENV/RDS- 48 Nickel as Ni ment No: CML/ENV/RDS- 48 Nickel as Ni	USEPA Compendium Method IO- 3.4;1999 CML/AIR/SOP/005 IS: 5182 Part 25 : 2018 IS: 5182 Part 11:2006 (Reaff.2017) IS: 5182 Part 12:2004 (Reaff.2019) USEPA Compendium Method IO- 3.4;1999 B, CML/ENV/FDS- 02; BDL: Below Deter <i>End of Report</i> For Che	BDL(DL:0.1) BDL(DL:1.0) 29.4 BDL (DL:1.0) BDL (DL:1.0) BDL (DL:0.1) BDL (DL:1.0) BDL (DL:1.0) ction Limit. DL: D ennai Mettex La Action Limit. DL: D Reviewed & Author P. KAVITH Technical Man Authorised Sign unlawful and offenders) are retained for 15 dc quirement; while perisi bless otherwise stated. T i Mettex Lab's custome	1.0 4.0 400 5.0 1.0 6.0 20 retection Limit.	μg/m ³ mg/m ³ μg/m ³ μg/m ³ ng/m ³ ng/m ³ ng/m ³

CML . CML E-1^{mail} : test@mettexlab.com W@b : www.mettexlab.com

-

CML

0

E •

NE C •

IMU 0 LMD 0

MU

6

0

N N

0 E S

0

CML

CML . CML .

S.M.

3

INU

C

E 0 CML

0

E.

6

6

μJ

0

C

Phone: 044-22323163, 22311034 42179490, 42179491

0

9

GML®

Chennai mettex lab priva

Jothi Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032.

TEST REPORT

Page No. 1 of 1

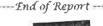
ISSUED	TO : M/s. Solara Active Pharma Sciences Ltd,	Т.	C Date	: 21.04.2023
	Periyakalapet, Puducherry – 605 014.	Т.	C No	:CML/23-24/5295
Party's Re	ef ; SRF Date: 16.04.2023	C	ate of F	Receipt: 16.04.2023

Lab No : 24004223

Sample Description: : Ambient Air Quality Monitoring - Location: In-front of IPU Plant Area (as stated by customer)

Date of Sampling: 15.04.2023- 10.15 am to 16.04.2023- 10.15 am

Ambient Temperature: Min. 29 °C & Max. 35 °C

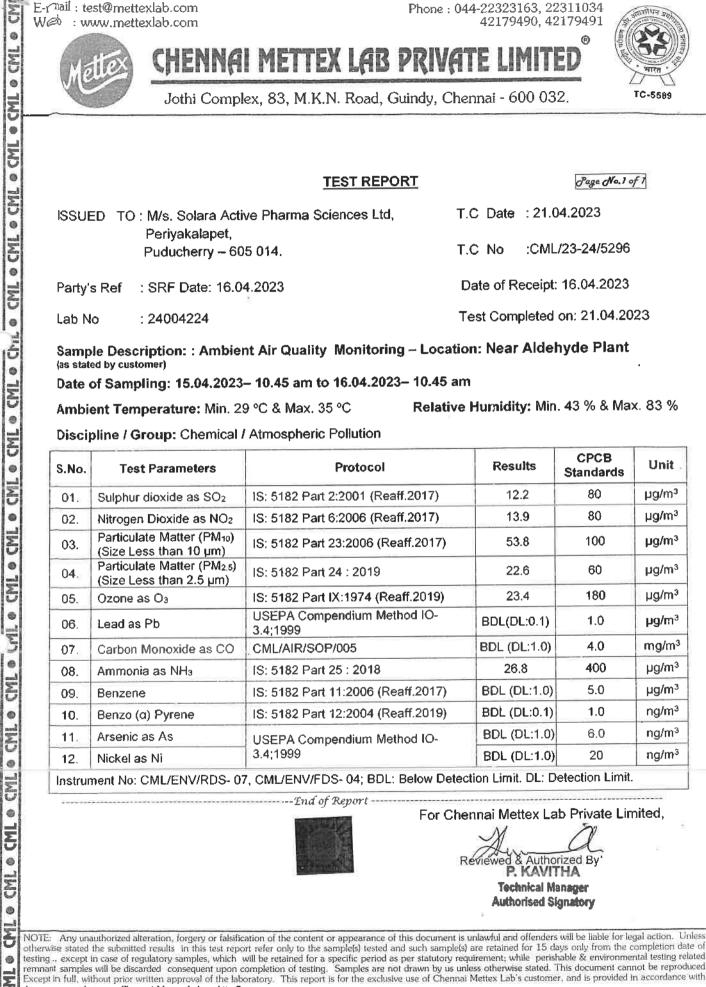

Relative Humidity: Min. 43 % & Max. 83 %

Test Completed on: 21.04.2023

Discipline / Group: Chemical / Atmospheric Pollution

S.No.	Test Parameters	Protocol	Results	CPCB Standards	Unit
01.	Sulphur dioxide as SO2	IS: 5182 Part 2:2001 (Reaff.2017)	12.5	80	µg/m³
02.	Nitrogen Dioxide as NO2	IS: 5182 Part 6:2006 (Reaff.2017)	14.3	80	µg/m³
03.	Particulate Matter (PM ₁₀) (Size Less than 10 µm)	IS: 5182 Part 23:2006 (Reaff.2017)	57.6	100	µg/m³
04.	Particulate Matter (PM _{2.5}) (Size Less than 2.5 µm)	IS: 5182 Part 24 : 2019	25.8	60	µg/m³
05.	Ozone as O ₃	IS: 5182 Part IX:1974 (Reaff.2019)	23.2	180	µg/m³
06,	Lead as Pb	USEPA Compendium Method IO- 3.4;1999	BDL(DL:0.1)	1.0	µg/m³
07.	Carbon Monoxide as CO	CML/AIR/SOP/005	BDL(DL:1.0)	4.0	mg/m ³
08.	Ammonia as NH3	IS: 5182 Part 25 : 2018	27.6	400	µg/m³
09.	Benzene	IS: 5182 Part 11:2006 (Reaff.2017)	BDL (D:1.0)	5.0	µg/m³
10.	Benzo (a) Pyrene	IS: 5182 Part 12:2004 (Reaff.2019)	BDL (DL:0.1)	1.0	ng/m ³
11.	Arsenic as As	USEPA Compendium Method IO-	BDL (DL:1.0)	6.0	ng/m ³
12.	Nickel as Ni	3.4;1999	BDL (DL:1.0)	20	ng/m ³

Instrument No: CML/ENV/RDS- 05, CML/ENV/FDS- 03; BDL; Below Detection Limit.



For Chennai Mettex Lab Private Limited, Reviewed & Authorized By

P. KAVITHA **Technical Manager Authorised Signatory**

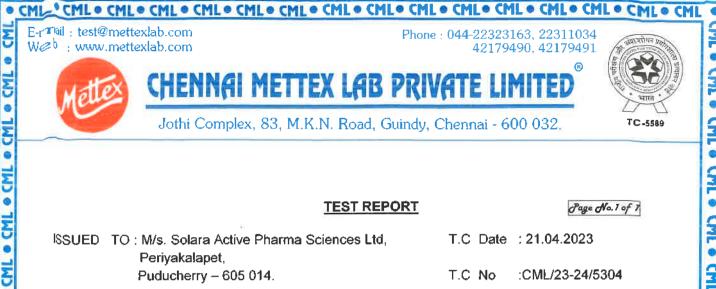
NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing ... except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab's customer. the agreement between Chennai Mettex Lab and its Customer

۲

0

Z

۲


0

E

the agreement between Chennai Mettex Lab and its Customer-

ME CML . CML

.

Party's Ref : SRF Date: 16.04.2023

Lab No : 24004240

•

IND

• THO

0

CML . CML . CML

CML

0

Ξ

۲

δ

0

Σ

e HU

Σ

WD •

δ

Σ

Sample Description: Test: Ambient Noise Level Monitoring (as stated by customer)

Work Commenced on: 15.04.2023

Test Method: IS: 9989 - 1981 (Reaff.2020)

Date of Receipt: 16.04.2023

Test Completed on: 16.04.2023

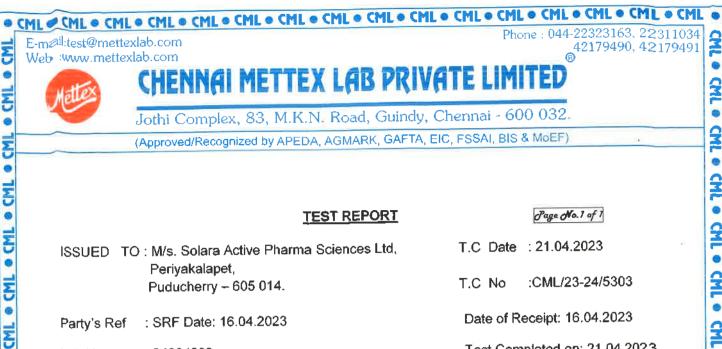
Discipline / Group: Chemical / Atmospheric Pollution

		Result in	Leq dB(A)	
S. No	Location	Day Time	Night Time	
1	Near Main Gate	63.7	54.4	
2	Near Boiler Area	56.7	50.6	
3	Near Old ETP Area	50.2	47.5	
4	Near IPCA Plant	62.8	54.8	

Note: As per Ministry of Environment and Forests vide gazette notification dated 14th February 2000 and as amended in January 2010 standards for Day time and Night time Noise level is 65 and 55 dB (A).

Noise Meter Make: LT Lutron; Model: SL- 4035SD; Serial No: Q637005;

----- End of Report -----For Chennai Mettex Lab Private Limited.


Reviewed & Authorized By

P. KAVITHA Technical Manager Authorised Signatory

CME/LAB/F/510/1

NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing, except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced Except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.

CML • CML

: 24004239 Lab No

Test Completed on: 21.04.2023

0

GAL

0

3

0

3

3

3

0

3

0

M

0

A

M

0

GML/LAB/F/5.10/1

Sample Description: Stack Emission – IPCA Plant Exhaust (as stated by customer)

Date of Sampling: 16.04.2023

Sampling Plan & Procedure: CML/STACK/SOP/08

Discipline / Group: Chemical / Atmospheric Pollution

SI. No.	Stack Details				Unit
01	Stack Diameter		0.25		
02	Temperature		32		°C
03	Velocity		7.8		m/sec
04	Volume of Gas Discharge	d	1340		Nm³/hr
SI. No.	Test Parameters	Test Method	Results	CPCB Norms	Unit
01	Acid Mist	USEPA Method 26A	10.9	35	mg/Nm ³

Note : Instrument ID.No: CML/ENV/SMK/07

End of Report : For Chennai Mettex Lab Private Limited.

Reviewed & Authorized By

P. KAVITHA **Technical Manager** Authorised Signatory

R NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing, except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer. . £

	st (Imettexiab com Av. mettexiab com		0 42179491 ©	The state of the second	
Mate	3 Chennai Mett	ex lab private	IMITED	OC	
V.C	Jothi Complex, 83, M.	K.N. Road, Guindy, Chennai	- 600 032.	10-5589	
		TEST REPORT		Ø	Page No. 1 of 1
	TO THE October Active Db		T.C. Date	; 25.08.20	23
SSUED	TO : M/s. Solara Active Ph Periyakalapet,	arma Sciences Liu,			
	Puducherry - 605 014		T.C No	:CML/23-:	24/41709
Party's Re	f : SRF Date: 19.08.202	3:	Date of R	teceipt: 19.0	08.2023
.ab No	:24045016		Test Com	pleted on:	25.08.2023
	ampling: 18.08.2023 Chemical ; Group : Atmosph	Sampling Plan & P	rocedure: CM	IL/STACK/S	2P/08
SI. No.		Stack Details			Unit
01	Diameter			1.5	m ²
02	Temperature			126	°C
03	Velocity			9.1 43095	m/sec Nm³/hr
04	Volume of Gas Discharged	1			Unit
S!, No.	Test Parameters	Test Method		Results 148.8	mg/Nm ³
01	Particulate Matter	IS 11255 Part 1-1985 (RA:		42	mg/Nm ³
	Sulphur-di-oxide (SO ₂)	USEPA Method - 6C - 199		172	mg/Nm ³
02		USEPA Method - 7E -1990		128	mg/Nm ³
02 03	Oxides of Nitrogen (NOx)		·	3.28	I mg/ivitr
	Oxides of Nitrogen (NOx) Carbon Monoxide as CO	USEPA Method - 10 - 199			0/
03		USEPA Method - 3A - 198	39	8.3	%
03 04 05 06	Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	USEPA Method - 3A - 198 USEPA Method - 3A - 198	39		%
03 04 05 06 Note: Ins	Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID No: CML/ENV/SM	USEPA Method - 3A - 198 USEPA Method - 3A - 198 //K/07	9 99	8.3 12.2	
03 04 05 06 Note: Ins As per Mo	Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID No: CML/ENV/SM	USEPA Method - 3A - 198 USEPA Method - 3A - 198 /IK/07 ent (Protection) Amendment I Particulate Matter Limits Agro Based	9 99	8.3 12.2 andards are Ma	
03 04 05 06 Note: Ins As per Mo Steam gen	Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SM DEFCC Notification Environm	USEPA Method - 3A - 198 USEPA Method - 3A - 198 /IK/07 ent (Protection) Amendment I Particulate Matter Limits Agro Based Fuels	89 89 Rules 2013 Sta	8.3 12.2 andards are Ma	%
03 04 05 06 Note: Ins As per Mo	Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SM DEFCC Notification Environm neration capacity (ton/hour)	USEPA Method - 3A - 198 USEPA Method - 3A - 198 /IK/07 ent (Protection) Amendment I Particulate Matter Limits Agro Based	9 Rules 2013 Sta Parameter	8.3 12.2 andards are Ma	%
03 04 05 06 Note: Ins As per Mo Steam ger less than 2	Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID No: CML/ENV/SM DEFCC Notification Environm neration capacity (ton/hour) 2 Ton Dan 10 Ton	USEPA Method - 3A - 198 USEPA Method - 3A - 198 //K/07 ent (Protection) Amendment Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³	9 Rules 2013 Sta Parameter SO ₂	8.3 12.2 andards are Ma	% iximum Limits to Based Fuels
03 04 05 06 Note: Ins As per Mo Steam gen less than 2 2 to less th	Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID No: CML/ENV/SM DEFCC Notification Environm neration capacity (ton/hour) 2 Ton Dan 10 Ton	USEPA Method - 3A - 198 USEPA Method - 3A - 198 IK/07 ent (Protection) Amendment f Particulate Matter Limits Agro Based Euels 500 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ Con Cher For Cher	Rules 2013 Sta Parameter SO ₂ NOx	8.3 12.2 andards are rs Ma Agu ab Private	% eximum Limits to Based Fuels

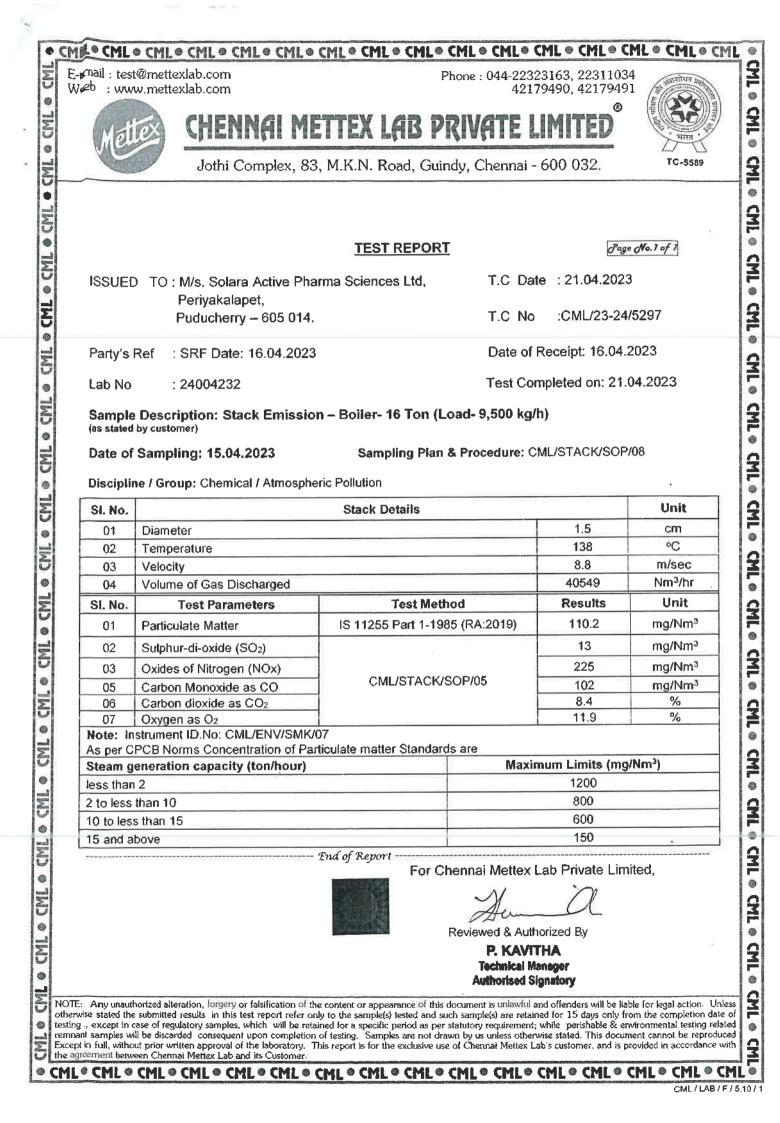
÷

o.com 5.com NNAI MET Complex, 33, M Solara Active P akalapet, cherry – 605 01 Date: 19,08,20	4. 7 23: T vion – D.G- 1010 KVA Caterpil	2311034 2179491 IITED 0 032. T.C Date : 25 T.C No : CM Date of Receip fest Completed lar	Atmospheric	1710 023 2023 Poilution Unit cm oC m/sec
b com NNAI MET Complex, 33, M Solara Active P akalapet, cherry – 605 01 Date: 19,08,20 5017 : Stack Emiss 8,08,2023 cedure: CML/ST. ar	42179490, 4 TEX LAB PRIVATE LIM I.K.N. Road. Guindy. Chennai - 60 <u>TEST REPORT</u> Pharma Sciences Ltd, 4. 3. 4. 3. 4. 4. 4. 4. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2179491 ITED 0 032. T.C Date : 25 T.C Date : 25 T.C No : CM Date of Receip rest Completed Iar Ip: Chemical I A 25 309 34.	ge dVo. 7 of 7 5.08.2023 AL/23-24/4 ot: 19.08.20 d on:25.08. Atmospheric 3 9 7	023 .2023 Poilution Unit cm oC m/sec
Complex. 33. M Solara Active P akalapet, cherry – 605 01 Date: 19.08.20 6017 :: Stack Emiss 8.08.2023 cedure: CML/ST	1.K.N. Road. Guindy. Chennai - 60 TEST REPORT 'harma Sciences Ltd, 'harma Sciences Ltd, 4. 23: T Jion – D.G- 1010 KVA Caterpil ACK/SOP/08 Discipline / Grout	0 032. 1 .C Date : 25 .C No : CM Date of Receip est Completed lar .p: Chemical <i>I A</i> .25 .309 .34.	ge dVo. 7 of 7 5.08.2023 AL/23-24/4 ot: 19.08.20 d on:25.08. Atmospheric 3 9 7	023 .2023 Poilution Unit cm oC m/sec
Solara Active P akalapet, cherry – 605 01 Date: 19.08.20 5017 :: Stack Emiss 8.08.2023 cedure: CML/ST	TEST REPORT Iharma Sciences Ltd, 1 4. 1 23: 1 Sciences Ltd, 1 Discipline / Grout 1	T.C Date : 25 T.C No : CM Date of Receip fest Completed lar	ge dVo. 7 of 7 5.08.2023 AL/23-24/4 ot: 19.08.20 d on:25.08. Atmospheric 3 9 7	023 .2023 Poilution Unit cm oC m/sec
Solara Active P akalapet, cherry – 605 01 Date: 19.08.20 5017 :: Stack Emiss 8.08.2023 cedure: CML/ST	TEST REPORT Iharma Sciences Ltd, 1 4. 1 23: 1 Sciences Ltd, 1 Discipline / Grout 1	T.C Date : 25 T.C No : CM Date of Receip fest Completed lar	ge dVo. 7 of 7 5.08.2023 AL/23-24/4 ot: 19.08.20 d on:25.08. Atmospheric 3 9 7	023 .2023 Poilution Unit cm oC m/sec
akalapet, cherry – 605 01 Date: 19.08.20 6017 I: Stack Emiss 8.08.2023 Eedure: CML/ST	harma Sciences Ltd, T 4. T 23: T Sion – D.G- 1010 KVA Caterpil ACK/SOP/08 Discipline / Grou	T.C Date : 25 T.C No :CM Date of Receip fest Completed lar .p: Chemical / A	5.08.2023 //L/23-24/4 ot: 19.08.20 d on:25.08. Atmospheric 9 9 7	023 .2023 Poilution Unit cm oC m/sec
akalapet, cherry – 605 01 Date: 19.08.20 6017 I: Stack Emiss 8.08.2023 Eedure: CML/ST	harma Sciences Ltd, T 4. T 23: T Sion – D.G- 1010 KVA Caterpil ACK/SOP/08 Discipline / Grou	T.C Date : 25 T.C No :CM Date of Receip fest Completed lar .p: Chemical / A	5.08.2023 //L/23-24/4 ot: 19.08.20 d on:25.08. Atmospheric 9 9 7	023 .2023 Poilution Unit cm oC m/sec
akalapet, cherry – 605 01 Date: 19.08.20 6017 I: Stack Emiss 8.08.2023 Eedure: CML/ST	4. T 23: T ion – D.G- 1010 KVA Caterpil ACK/SOP/08 Discipline / Grou	C.C. No :CM Date of Receip fest Completed lar ip: Chemical I A 25 309 34.	/IL/23-24/4 bt: 19.08.20 d on:25.08. Atmospheric 9 7	023 .2023 Poilution Unit cm oC m/sec
cherry – 605 01 Date: 19.08.20 6017 :: Stack Emiss 8.08.2023 cedure: CML/ST	23: ion – D.G- 1010 KVA Caterpil ACK/SOP/08 Discipline / Grou	Date of Receip est Completed lar ip: Chemical / A	ot: 19.08.20 d on:25.08. Atmospheric 9 9	023 2023 Poliution Unit cm oC m/sec
5017 I: Stack Emiss 8.08.2023 Sedure: CML/ST	T ion – D.G- 1010 KVA Caterpil ACK/SOP/08 Discipline / Grou	est Completed lar ip: Chemicai / A 25 300 34.	d on:25.08. Atmospheric 9 7	Poliution Unit cm oC m/sec
e: Stack Emiss 8.08.2023 cedure: CML/ST er	ion – D.G- 1010 KVA Caterpil ACK/SOP/08 Discipline / Grou	lar ip: Chemicai / A 25 309 34.	Atmospheric 9 7	Poliution Unit cm ∘C m/sec
8.08.2023 edure: CML/ST.	ACK/SOP/08 Discipline / Grou	ip: Chemical / A 25 309 34.	5 9 7	Unit cm °C m/sec
	Stack Details	309 34.	9 7	cm °C m/sec
		309 34.	9 7	°C m/sec
s Discharged		34.	7	m/sec
s Discharged				
s Discharged		312		
		J12		Nm ³ /hr
rameters	Test Method	Results	CPCB Norms	Unit
atter	IS 11255 Part 1-1985 (RA:2019)	56.4	75	mg/Nm ³
de (SO ₂)		BDL (DL: 3.0)		ppmv
ogen (NOx)		349	710	ppmv
Hydrocarbon	CML/STACK/SOP/06	89	100	mg/Nm ²
		108	150	mg/Nm³
e as CO ₂	-		2 61 5)	%
	L	10.7		%
······································				
	~	- <u>2</u> eviewed & Author V. SELVAKUI Senior Chemi	orized By MAR ist	te Limitea,
	D: CML/ENV/SM	de (SO ₂) ogen (NOx) Hydrocarbon kide as CO e as CO ₂ D: CML/ENV/SMK/07 End of Report R R CML/STACK/SOP/06	de (SO2) BDL (DL: 3.0) ogen (NOx) 349 Hydrocarbon CML/STACK/SOP/06 kide as CO 108 e as CO2 7.5 10.7 10.7	de (SO ₂) BDL (DL: 3.0) ogen (NOx) 349 710 Hydrocarbon CML/STACK/SOP/06 89 100 kide as CO 108 150 e as CO ₂ 7.5 D: CML/ENV/SMK/07 10.7 Tor Chennal Metter Lab Priva 2 Reviewed & Authorized By V. SELVAKUMAR Senior Chemist Authorised Signatory

VILL .	CML 🛛 🤇	ML . CML . CM	L	CML . CML . CML . CML . CM	if a curr a l	CULA CULA	CMLOCH
		nertexiab.com		Phone 044-22323163, 22		Station and	
Web	1.100040.1	nettexlab com		42179490, 42	179491 @		
ME		CHENNO	METTE	ex lab private lim	ITEN		制品之
I Kē	IPA	ATENDAL	116116	IN FUD LUINUIC TIL	IIGV	- जास	
	and and	Jothi Complex	83. M.K	N. Road: Guindy! Chennai 600	032	TC-5589	コモ(((47)之)
				TEST REPORT	0	Page No. 1 of 1	
					C Date ::	25.08.2023	
ISSUE	D TO			rma Sciences Ltd, T.	C Date	20,00.2020	
		Periyakalapet,		т	C No :C	CML/23-24/4	1711
		Puducherry – 6	000 Q14.	• •	0 110 .0		
Doctv's	Daf	: SRF Date: 19	08 2023	D	ate of Rece	ipt: 19.08-20	23
Partys	NGI	. SRI Date. 13	.00.2020.				
Lab No)	: 24045018		Te	est Complet	ed on:25.08.	2023
Sampl	e Desc d by cust	ription: Stack	Emissio	n – D.G- 1500 KVA Caterpill	ar		
Date o	of Samp	oling: 18.08.202	23	Sampling Plan & Pr	oceaure: O	WE/STAUNSU	JP/08
Discipi	ine / Gr	oup: Chemical / .	Atmosphe	ric Follution			
	1				Chimney-1	Chimney-	2 Unit
SI. No.	01-11	Discustor	Stack [Jetans	25	25	cm
01		Diameter			346	346	°C
02	Veloci	erature			22.4	22.1	m/sec
						4000	
04	Volum	ne of Gas Dischar	rged		1899	1868	Nm³/hr
04 Si. No.	1	te of Gas Dischar Test Parameters		Test Method	1899 Results	1868 CPCB Norms	Unit
			S	Test Method IS 11255 Part 1-1985 (RA:2019)		CPCB	Unit
SI. No. 01	Partic	Test Parameters ulate Matter	S		Results	CPCB Norms 75	Unit
Si. No. 01 02	Partici Sulph	Test Parameters ulate Matter ur-di-oxide (SO ₂)	5		Results	CPCB Norms 75	Unit mg/Nm
SI. No. 01 02 03	Partici Sulph Oxide	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC	s	S 11255 Part 1-1985 (RA:2019)	Results 55.7 BDL (DL: 3. 405	CPCB Norms 75 0) 710	Unit mg/Nm ppmv ppmv
Si. No. 01 02	Partici Sulph Oxide	Test Parameters ulate Matter ur-di-oxide (SO ₂)	s		Results 55.7 BDL (DL: 3. 405 83	CPCB Norms 75 0) 710 100	Unit mg/Nm ppmv ppmv mg/Nm
SI. No. 01 02 03	Partici Sulph Oxide Non-M	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC	s Dx) rbon	S 11255 Part 1-1985 (RA:2019)	Results 55.7 BDL (DL: 3. 405	CPCB Norms 75 0) 710	Unit mg/Nm ppmv ppmv mg/Nm mg/Nm
SI. No. 01 02 03 04	Partici Sulph Oxide Non-M Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Aethane Hydroca	s Dx) rbon CO	S 11255 Part 1-1985 (RA:2019)	Results 55.7 BDL (DL: 3. 405 83 114 9.1	CPCB Norms 75 0) 710 100	Unit mg/Nm ppmv ppmv mg/Nm mg/Nm
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Methane Hydroca on Monoxide as CO on dioxide as CO en as O ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114	CPCB Norms 75 0) 710 100 150	Unit mg/Nm ppmv ppmv mg/Nm mg/Nm
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Aethane Hydroca on Monoxide as CO ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1	CPCB Norms 75 0) 710 100 150 	Unit mg/Nm ⁻ ppmv ppmv mg/Nm mg/Nm
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Methane Hydroca on Monoxide as CO on dioxide as CO en as O ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1	CPCB Norms 75 0) 710 100 150 	Unit mg/Nm ppmv ppmv mg/Nm mg/Nm %
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Methane Hydroca on Monoxide as CO on dioxide as CO en as O ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1	CPCB Norms 75 0) 710 100 150 	Unit mg/Nm ppmv ppmv mg/Nm mg/Nm %
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Methane Hydroca on Monoxide as CO on dioxide as CO en as O ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1 9.8 hermai Met ~. 2.0	CPCB Norms 75 0) 710 100 150 	Unit mg/Nm ppmv ppmv mg/Nm mg/Nm %
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Methane Hydroca on Monoxide as CO on dioxide as CO en as O ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1 9.8 Normal Max V. 2.0 Reviewed if	CPCB Norms 75 0) 710 100 150 	Unit mg/Nm ppmv ppmv mg/Nm mg/Nm %
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Methane Hydroca on Monoxide as CO on dioxide as CO en as O ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1 9.8 Normal Methods ~. 2 Reviewed & V. SELV	CPCB Norms 75 0) 710 100 150 *Cox Lab Prive & Authorized B	Unit mg/Nm ¹ ppmv ppmv mg/Nm mg/Nm %
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Methane Hydroca on Monoxide as CO on dioxide as CO en as O ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1 9.8 Hommal Methods ~. 2 Reviewed & V. SELV Senior	CPCB Norms 75 0) 710 100 150 	Unit mg/Nm ² ppmv ppmv mg/Nm ² mg/Nm ² %
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Methane Hydroca on Monoxide as CO on dioxide as CO en as O ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1 9.8 Hommal Methods ~. 2 Reviewed & V. SELV Senior	CPCB Norms 75 0) 710 100 150 *Combined B Akumar r Chamist	Unit mg/Nm ² ppmv ppmv mg/Nm ² mg/Nm ² %
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Methane Hydroca on Monoxide as CO on dioxide as CO en as O ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1 9.8 Hommal Methods ~. 2 Reviewed & V. SELV Senior	CPCB Norms 75 0) 710 100 150 *Combined B Akumar r Chamist	mg/Nm ² ppmv ppmv mg/Nm ² %
SI. No. 01 02 03 04 05 06 07	Partico Sulpho Oxide Non-M Carbo Carbo	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Methane Hydroca on Monoxide as CO on dioxide as CO en as O ₂	s Dx) irbon CO	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1 9.8 Hommal Methods ~. 2 Reviewed & V. SELV Senior	CPCB Norms 75 0) 710 100 150 *Combined B Akumar r Chamist	Unit mg/Nm ² ppmv ppmv mg/Nm ² mg/Nm ² %
SI. No. 01 02 03 04 05 06 07 Note:	Particu Sulpho Oxide Non-M Carbo Carbo Oxyge	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Aethane Hydroca on Monoxide as CO ₂ on dioxide as CO ₂ en as O ₂ ent ID No: CML/E	s Dx) irbon 2 NV/SMK/	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1 9.8 Hornal Met V. SELV Senior Authorise	CPCB Norms 75 0) 710 100 150 & Authorized B /A KUMAR r Chemist ed Signatory	Unit mg/Nm ² ppmv ppmv mg/Nm ² mg/Nm ² %
SI. No. 01 02 03 04 05 06 07 Note:	Partici Sulphi Oxide Non-M Carbo Carbo Oxyge Instrume	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NO Aethane Hydroca on Monoxide as O on dioxide as CO ₂ en as O ₂ ent ID No: CML/E	s Dx) irbon 2 NV/SMK/ 2 NV/SMK/	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1 9.8 Normal Met V. SELV Senior Authorise	CPCB Norms 75 0) 710 100 150 Kathorized B Aktimate B Aktimate B Aktimate B Aktimate B Aktimate B	Unit mg/Nm ¹ ppmv ppmv mg/Nm mg/Nm %
SI. No. 01 02 03 04 05 06 07 Note:	Particu Sulpho Oxide Non-A Carbo Oxyge Instrume	Test Parameters ulate Matter ur-di-oxide (SO ₂) s of Nitrogen (NC Aethane Hydroca on Monoxide as CO ₂ on dioxide as CO ₂ en as O ₂ ent ID.No: CML/E	s Dx) irbon CO 2 ENV/SMK/I ENV/SMK/I ENV/SMK/I ENV/SMK/I ENV/SMK/I	S 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/06	Results 55.7 BDL (DL: 3. 405 83 114 9.1 9.8 Normal Mat 7.2 Reviewed & V. SELV Senior Authorise	CPCB Norms 75 0) 710 100 150 Xox Lab Prive & Authorized B /AKUMAR r Chemist ed Signatory	Unit mg/Nmi ppmv ppmv mg/Nm mg/Nm % %

ſ		CML	CML . CML . CML . CML . CI	ML . CML . CML . CML . CML . C	ML • CML •	CML + CML +	CML . CMI
	CML		i test@mettexlab.com	Phone : 044-22323163, 21		- Ann	
	0	Web	i www.mettexlab.com	42179490, 43	2179491 @		
	N	NE	CHENNAL MET	itex lab private lim	· · · · · · · · · · · · · · · · · · ·	36	
	6	ALC:				- ATTH	
	W		Jothi Complexi 83. !	M.K.N. Road, Guindy. Chennai - 600	032	TC-5589	
	0						
	E B		,	TEST REPORT		Page No. 1 of 1	
	•	ISSUE	D TO : M/s. Solara Active I	Pharma Sciences I td T	C Date -	25.08.2023	
	빙	10002	Periyakalapet,		. O Date .	20.00.2020	
	•		Puducherry - 605 0	14. T	C No :	CML/23-24/4	1712
	U						
	•	Party's	Ref : SRF Date: 19.08.20	023: D	ate of Rece	eipt: 19.08.20	23
	빙	Lab No	: 24045019	Te	est Complet	ed on:25.08.	2023
- E -	AML @			sion – D.G- 1010 KVA Cummin	IS		
- 11		(as stated	d by customer)				
- 11		Date o	f Sampling: 18.08.2023	Sampling Plan & Pr	ocedure: Cl	ML/STACK/SC	P/08
- K	TEL	Discipli	ine / Group: Chemical / Atmos	solaesia Paliutina			
	2						
2100	탉	SI. No.	Sta	ck Details	Chimney-	1 Chimney-	2 Unit
1	Ľ	01	Stack Diameter		25	25	cm
INC		02	Temperature		269	269	°C
1		03	Velocity		18.1	17.7	m/sec
CIMI		04	Volume of Gas Discharged		1748	1710	Nm ³ /hr
1		SI. No.	Test Parameters	Test Method	Results	CPCB Norms	Unit
CM	2	01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	43.1	75	mg/Nm ³
1	1.0	02	Sulphur-di-oxide (SO2)		BDL (DL' 3	0)	ppmv
TML		03	Oxides of Nitrogen (NOx)		383	710	ppmv
9		04	Non-Methane Hydrocarbon	CML/STACK/SOP/06	84	100	mg/Nm ³
CMI	-	05	Carbon Monoxide as CO		106	150	mg/Nm ³
	T	06	Carbon dioxide as CO2		7-1		%
M		07	Oxygen as O ₂		11		%
1.	L	Note: Ir	istrument ID.No. ONL/ENV/SN	AKIOT			
CMI		*********		End of Report			
	1			For C	nennai Met	tex Lab Priva	ite Limited,
					~.5	U.A.	~~~
W				in Star Sec	Review	ved & Authorize	ed By
0	1					ELVAKUMAR	
S						Senior Chemist horised Signatory	
•							
W	a			n of the content or appearance of this document is or			
0	1 ::	ship acr	ne in this of regulation kamples which will r	rfer onlic to that semitivitist rested and stuch semple(s) a be retended for a specific putiod as per statutory requi	respencivoile, per	rshable & environme	erai testinti comi
E	1.5	- Jeon V. 1981		clenion of centerg. "Semplicitients not drawn by its unless ony." This report is for the exclusive use of Chennal M mar.			
1M	1	and the second se	the second s				1
0	CI	ML® CM	IE O CME O CME O CME O CM	L	MENTMEN	CML 2 CML	CML • CML

Jothi Complex, 83, M D : M/s. Solara Active P Periyakalapet, Puducherry – 605 01 : SRF Date: 19.08.20 : 24045020	4. 23 T ion – D.G- 1500 KVA Cummin Sampling Plan & Pl	0 032. T.C Date : 2 T.C No :C Date of Received Test Complete 15	:ML/23-24/41 ipt: 19.08.202	23
): M/s. Solara Active P Periyakalapet, Puducherry – 605 01 : SRF Date: 19.08.202 : 24045020 cription: Stack Emiss stomer) pling: 18.08.2023 	TEST REPORT harma Sciences Ltd, 4. 23 Tion – D.G- 1500 KVA Cummin Sampling Plan & Pl	T.C Date : 2 T.C No :C Date of Recei Test Complete	25.08.2023 ML/23-24/41 ipt: 19.08.202	23
Periyakalapet, Puducherry – 605 01 SRF Date: 19.08.202 24045020 cription: Stack Emiss stomer) pling: 18.08.2023	harma Sciences Ltd, 4. 23 T ion – D.G- 1500 KVA Cummin Sampling Plan & Pl	T.C Date : 2 T.C No :C Date of Recei Test Complete	25.08.2023 ML/23-24/41 ipt: 19.08.202	23
Periyakalapet, Puducherry – 605 01 SRF Date: 19.08.202 24045020 cription: Stack Emiss stomer) pling: 18.08.2023	4. 23 T ion – D.G- 1500 KVA Cummin Sampling Plan & Pl	Г.С No :C Date of Recei 'est Complete 1s	:ML/23-24/41 ipt: 19.08.202	23
Puducherry – 605 01 SRF Date: 19.08.20 24045020 cription: Stack Emiss stomer) pling: 18.08.2023	23 T T ion – D.G- 1500 KVA Cummin Sampling Plan & Pl	Date of Recei est Complete 15	ipt: 19.08.202	23
24045020 cription: Stack Emiss ^{stomer)} pling: 18.08.2023	ion – D.G- 1500 KVA Cummir Sampling Plan & Pl	ັest Complete າຣ		
cription: Stack Emiss ^{stomer)} pling: 18.08.2023	ion – D.G- 1500 KVA Cummin Sampling Plan & Pl	าร	ed on:25.08.2	2023
stomer) pling: 18.08.2023	Sampling Plan & P			
	heric Pollution	rocedure: CM	L/STACK/SOF	°/O8
Stack	Details	Chimney-1	Chimney-2	Unit
Diameter		25	25	cm
erature		329	329	°C
1		21.9	22.5	m/sec
ne of Gas Discharged		1910	1957	Nm ³ /hr
Test Parameters	Test Method	Results	CPCB Norms	Unit
ulate Matter	IS 11255 Part 1-1985 (RA:2019)	48.6	75	mg/Nm ³
ur-di-oxide (SO ₂)		BDL (DL: 3.0)		ppmv
s of Nitrogen (NOx)		304	710	ppmv
Methane Hydrocarbon	CML/STACK/SOP/06	83	100	mg/Nm ³
n Monoxide as CO		137	150	mg/Nm ³
on dioxide as CO ₂		8.2		%
		10.7	-	%
	culate Matter hur-di-oxide (SO ₂) es of Nitrogen (NOx) Methane Hydrocarbon on Monoxide as CO on dioxide as CO ₂ en as O ₂	Derature bity me of Gas Discharged Test Parameters Test Method culate Matter IS 11255 Part 1-1985 (RA:2019) hur-di-oxide (SO ₂) Base of Nitrogen (NOx) Methane Hydrocarbon CML/STACK/SOP/06 on Monoxide as CO CML/STACK/SOP/06 on dioxide as CO2 Base of Nitrogen (NOX)	K Diameter 25 perature 329 pity 21.9 me of Gas Discharged 1910 Test Parameters Test Method Results culate Matter IS 11255 Part 1-1985 (RA:2019) 48.6 hur-di-oxide (SO2) BDL (DL: 3.0) 304 es of Nitrogen (NOx) CML/STACK/SOP/06 83 fon Monoxide as CO 137 137 on dioxide as CO2 8.2 10.7	K Diameter 25 25 berature 329 329 329 beity 21.9 22.5 21.9 22.5 me of Gas Discharged 1910 1957 1957 Test Parameters Test Method Results CPCB Norms culate Matter IS 11255 Part 1-1985 (RA:2019) 48.6 75 hur-di-oxide (SO2) BDL (DL: 3.0) es of Nitrogen (NOx) CML/STACK/SOP/06 83 100 Methane Hydrocarbon CML/STACK/SOP/06 83 100 on Monoxide as CO2 8.2 - en as O2 10.7 - -


Web : 1	test@mettexlab.com www.mettexlab.com	Phone : 044-223 421	323163, 223 79490, 423		Status B	
Natt	CHENNAI MET	TEX LAB PRIVA	TE LIMI	TED		
Ve	Jothi Complex, 83, N	1.K.N. Road, Guindy. Che	nnai - 600	032.	TC-558	
		TEST REPORT				Page No. 1 of 1
\$SUED	TO : M/s. Solara Active P	harma Sciences Ltd.	T.C	Date	: 22.07	2023
	Periyakalapet,	,				
	Puducherry - 605 01	4.	Τ.	C No	: CML/3	23-24/31625
^p arty's R	Ref : SRF Date: 18.07.20	23:	Da	ité of Re	eceipt: 18	3.07.2023
ab No	:24034108		τ.	at Com	lated on	22.07.2023
OVI OF	24034108		10	st Comp		.22,01.2023
Sample	Description: Stack Emiss	ion-Boiler-16 Ton (L	oad- 12,0	00 kg/h)	
as stated t	y customer)					
Into of t	Semaline: 47.07.2022	Sampling Plan	2 Drocod	uro: Chill	USTACK	ISOP/08
Jate of a	Sampling: 17.07.2023	Sampling Plan	& Proced	are: Civi	LISTAUN	50F/00
1		for the Phendler				
viscipline	: Chemical ; Group : Atmosp	neric Pollution				
AL	1	04 L D 4 1			T	11-14
SI. No.		Stack Details				Unit
01	Diameter			1.		m² ⁰C
02	Temperature			12		m/sec
03	Velocity Volume of Gas Discharged			491		Nm ³ /hr
SI. No. 01	Test Parameters	Test Method		Rest		Unit
Ų I	Particulate Matter	IS 11255 Part 1-1985 (F	(A:2019)	128		mg/Nm ³
00	1011 5 11 1001			5		mg/Nm ³
02	Sulphur-di-oxide (SO ₂)	-	1			
03	Oxides of Nitrogen (NOx)		F	13	0	mg/Nm ³
		CML/STACK/SOP	/05	13 10		mg/Nm ³ mg/Nm ³
03	Oxides of Nitrogen (NOx)	CML/STACK/SOP	/05		3	
03 04 05 06	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂		/05	10	3	mg/Nm ³
03 04 05 06 Note: In	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI	ИК/07		10 €.: 14	3 2 6	mg/Nm³ % %
03 04 05 06 Note: In	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	MK/07 Nent (Protection) Amendmo		10 €.: 14	3 2 6	mg/Nm³ % %
03 04 05 06 Note: In As per M	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environm	MK/07 Ient (Protection) Amendmo Particulate Matter	ent Rules 2	10 6. 14 013 Sta	3 2 6 ndards ar	mg/Nm³ % %
03 04 05 06 Note: In As per M	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI	MK/07 Nent (Protection) Amendmo		10 6. 14 013 Sta	3 2 6 ndards ar Maxim	mg/Nm ³ % %
03 04 05 06 Note: In As per M	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environm	MK/07 Ient (Protection) Amendmo Particulate Matter Limits Agro Based	ent Rules 2	10 6. 14 013 Stal	3 2 6 ndards ar Maxim	mg/Nm ³ % % e pum Limits
03 04 05 06 Note: In As per M Steam ge	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environm	MK/07 nent (Protection) Amendmo Particulate Matter Limits Agro Based Fuels	ent Rules 2 Param	10 6. 14 013 Sta eters	3 2 6 ndards ar Maxim	mg/Nm ³ % % e pum Limits
03 04 05 06 Note: In As per M Steam ge	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environment Interation capacity (ton/hour) 2 Ton than 10 Ton	MK/07 Ient (Protection) Amendme Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³	ent Rules 2 Param SC	10 6. 14 013 Sta eters	3 2 6 ndards ar Maxim	mg/Nm ³ % % e pum Limits
03 04 05 06 Note: In As per M Steam ge ess than 2 to less t	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environment Interation capacity (ton/hour) 2 Ton than 10 Ton	MK/07 nent (Protection) Amendme Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³ 250 mg/Nm ³	ent Rules 2 Param SC NO	10 6. 14 013 Sta eters	3 2 6 ndards ar Maxim	mg/Nm ³ % % e pum Limits
03 04 05 06 Note: In As per M Steam ge ess than 2 to less t	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environment Interation capacity (ton/hour) 2 Ton than 10 Ton	MK/07 nent (Protection) Amendme Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³	ent Ruies 2 Param SC	10 6. 14 013 Sta eters	3 2 6 Maxim Agro B	mg/Nm ³ % % e bum Limits based Fuels
03 04 05 06 Note: In As per M Steam ge ess than 2 to less t	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environment Interation capacity (ton/hour) 2 Ton than 10 Ton	MK/07 nent (Protection) Amendme Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³	ent Rules 2 Param SC NO	10 6. 14 013 Sta eters	3 2 6 Maxim Agro B	mg/Nm ³ % % e bum Limits based Fuels
03 04 05 06 Note: In As per M Steam ge ess than 2 to less t	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environment Interation capacity (ton/hour) 2 Ton than 10 Ton	MK/07 nent (Protection) Amendme Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³	ent Ruies 2 Param SC	10 6. 14 013 Sta eters	3 2 6 Maxim Agro B	mg/Nm ³ % % e bum Limits based Fuels
03 04 05 06 Note: In As per M Steam ge ess than 2 to less t	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environment Interation capacity (ton/hour) 2 Ton than 10 Ton	MK/07 nent (Protection) Amendme Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ For Cl	ent Rules 2 Param SC NO hennai Me	10 6. 14 013 Star eters x	3 2 6 Maxim Agro B Private	mg/Nm ³ % % e bum Limits based Fuels
03 04 05 06 Note: In As per M Steam ge ess than 2 to less t	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environment Interation capacity (ton/hour) 2 Ton than 10 Ton	MK/07 nent (Protection) Amendme Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ For Cl	ent Rules 2 Param SO NO hennai Me Reviewed 8	10 6. 14 013 Sta eters x ettex La Authoriz	3 2 6 Maxim Agro B b Private zed By	mg/Nm ³ % % e bum Limits based Fuels
03 04 05 06 Note: In As per M Steam ge ess than 2 to less t	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environment Interation capacity (ton/hour) 2 Ton than 10 Ton	MK/07 nent (Protection) Amendme Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ For Cl	ent Rules 2 Param SO NO hennai Me Reviewed 8 Reviewed 8	10 6. 14 013 Star eters x ettex La Authoriz	3 2 6 Maxim Agro B b Private zed By	mg/Nm ³ % % e bum Limits based Fuels
03 04 05 06 Note: In As per M Steam ge ess than 2 to less t	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IOEFCC Notification Environment Interation capacity (ton/hour) 2 Ton han 10 Ton id above	MK/07 nent (Protection) Amendme Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ Trid of Report For Cl	ent Rules 2 Param SC NO hennai Me Reviewed & Reviewed & P. K	10 6. 14 013 Sta eters x ettex La ettex La Authoriz AVITHA cal Manag	3 2 6 Maxim Agro B b Private zed By	mg/Nm ³ % % e bum Limits based Fuels
03 04 05 06 Note: In As per M Steam ge ess than 2 to less t 10 Ton an	Oxides of Nitrogen (NOx) Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ strument ID.No: CML/ENV/SI IoEFCC Notification Environm meration capacity (ton/hour) 2 Ton han 10 Ton id above	MK/07 nent (Protection) Amendme Particulate Matter Limits Agro Based Fuels 500 mg/Nm ³ 250 mg/Nm ³ 250 mg/Nm ³ 7 nd of Report For Cl For Cl For Cl an of the content or appearance of this inter only to the sample(s) tested and so be retained for a specific period as per	ent Rules 2 Param SC NO hennai Me Autor Reviewed & P. K	10 6. 14 013 Stal eters x ettex La Authoriz Avitha cal Manag	3 2 6 Maxim Agro B b Private ced By fonders will be pershade s	mg/Nm ³ % % e bum Limits based Fuels

TEST REPORTPage d/e.1 of 1ISSUED TO : M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, Puducherry – 605 014.T.C. Date : 22.07.2023 CML/STACK/SOP/05Party's Ref: SRF Date: 18.07.2023Date of Receipt: 18.07.2023Party's Ref: SRF Date: 18.07.2023Date of Receipt: 18.07.2023Lab No: 24034112Test Completed on: 22.07.2023Sample Description: Stack Emission – D.G- 1500 KVA Cummins (as stated by customer)Test Completed on: 22.07.2023Date of Sampling: 17.07.2023Sampling Plan & Procedure: CML/STACK/SOP/08Discipline / Group: Chemical / Atmospheric Pollution2525Stack Diameter2625cm02Temperature34734703Velocity23.323.0m/sec04Volume of Gas Discharged19731943Nm³/h01<Particulate Matter15 11265 Part 1-1985 (RA:2019)50.77.5mg/Nn03Oxides of Nitrogen (NOx)CML/STACK/SOP/05BDL (DL' 3.0)ppmv			11 • CML • CML • CML • CML • CML • C Phone • 044-22323163, 2 42179490, 4 TEX LAB PRIVATE LIM M.K.N. Road, Guindy, Chennai - 60	2311034 2179491 IITED	urrent and the second sec	
ISSUED TO : M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, Puducherry – 605 014. Party's Ref : SRF Date: 18.07.2023 Lab No : 24034112 Sample Description: Stack Emission – D.G- 1500 KVA Cummins (as stated by customer) Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Pollution SI. No. Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 02 Temperature 03 Velocity 04 Volume of Gas Discharged 1973 1943 Nm ³ /rt SI. No. Test Parameters 04 Volume of Gas Discharged 1973 1943 Nm ³ /rt 01 Particulate Matter 15 11255 Part 1-1985 (RA:2019) 50.7 02 Sulphur-di-oxide (SO ₂) 03 Oxides of Nitrogen (NOX) 04 Oxides of Nitrogen (NOX)	~					
Periyakalapet, Puducherry = 605 014. T.C. No : CML/23-24/31629 Party's Ref : SRF Date: 18.07.2023 Date of Receipt: 18.07.2023 Lab No : 24034112 Test Completed on:22.07.2023 Sample Description: Stack Emission – D.G- 1500 KVA Cummins (# stated by customer) Test Completed on:22.07.2023 Date of Sampling: 17.07.2023 Sampling Pian & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Pollution Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 02 Temperature 347 347 °C 03 Velocity 23.3 23.0 m/sec 04 Volume of Gas Discharged 1973 1943 Nm³/th 01 Particulate Matter 15 11255 Part 1-1985 (RA:2019) 50.7 75 mg/Nn 01 Particulate Matter 15 11255 Part 1-1985 (RA:2019) 50.7 75 mg/Nn 01 Particulate Matter 15 11255 Part 1-1985 (RA:2019) 50.7 75 mg/Nn 01 Particulate Matter 15 11255 Part 1-1985 (RA:2019) 50.7 75 mg/Nn			TEST REPORT	σ^{a}	ige No. ? of I	
Puducherry – 605 014.T.C. No: CML/23-24/31629Party's Ref: SRF Date: 18.07.2023Date of Receipt: 18.07.2023Lab No: 24034112Test Completed on:22.07.2023Sample Description: Stack Emission – D.G- 1500 KVA Cummins (as stated by customer)Date of Sampling: 17.07.2023Sampling: 17.07.2023Sampling Plan & Procedure: CML/STACK/SOP/08Discipline / Group: Chemical / Atmospheric PollutionStack DetailsChimney-1Chimney-201Stack Diameter02Temperature03Velocity04Volume of Gas Discharged05Norms06Test Method07Particulate Matter08Sulphur-di-oxide (SO2)03Oxides of Nitrogen (NOX)03Oxides of Nitrogen (NOX)CML/STACK/SOP/0503Oxides of Nitrogen (NOX)CML/STACK/SOP/05BDL (DL: 3.0)	ISSUE		Pharma Sciences Ltd, T	C Date : 22	2.07.2023	
Lab No : 24034112 Test Completed on:22.07.2023 Sample Description: Stack Emission – D.G- 1500 KVA Cummins (as stated by customer) Date of Sampling: 17.07.2023 Sampling Pian & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Pollution SI. No. Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 02 Temperature 347 347 °C 03 Velocity 23.3 23.0 m/sec 04 Volume of Gas Discharged 1973 1943 Nm³/fr SI. No. Test Parameters Test Method Results CPCB Norms Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 50.7 75 mg/Nn 02 Sulphur-di-oxide (SO ₂) CML/STACK/SOP/05 320 710 ppmv			14. T	r.c No : C	ML/23-24/316	529
Sample Description: Stack Emission – D.G- 1500 KVA Cummins (#s stated by customer) Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Pollution Sl. No. Chemical / Atmospheric Pollution Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 0 0 0 m347 347 °C 0 0 0 m347 347 °C 0 0 0 0 0 0 0 m347 347 °C 0 0 0 0 0 0 0	Party's	Ref : SRF Date: 18.07.20)23 [Date of Receip	ot: 18.07.2023	3
(#* stated by customer) Date of Sampling: 17.07.2023 Sampling Pian & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Pollution Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 02 Temperature 347 347 °C 03 Velocity 23.3 23.0 m/sec 04 Volume of Gas Discharged Test Method Results CPCB Norms Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA·2019) 50.7 75 mg/Nn 02 Sulphur-di-oxide (SO?) CML/STACK/SOP/05 BDL (DL·3.0) ppmv 03 Oxides of Nitrogen (NOX) CML/STACK/SOP/05 BDL (DL·3.0) ppmv	Lab No	: 24034112		Test Complete	ed on:22.07.2	2023
Discipline / Group: Chemical / Atmospheric Pollution SI. No. Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 02 Temperature 347 347 °C 03 Velocity 23.3 23.0 m/sec 04 Volume of Gas Discharged 1973 1943 Nm³/n SI. No. Test Parameters Test Method Results CPCB Norms Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 50.7 75 mg/Nn 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 BDL (DL: 3.0) ppmv 03 Oxides of Nitrogen (NOX) CML/STACK/SOP/05 320 710 ppmv	(as stated	by customer)				
SI. No. Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 02 Temperature 347 347 °C 03 Velocity 23.3 23.0 m/sec 04 Volume of Gas Discharged 1973 1943 Nm³/n SI. No. Test Parameters Test Method Results CPCB Norms Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 50.7 75 mg/Nn 02 Sulphur-di-oxide (SO?) CML/STACK/SOP/05 BDL (DL: 3.0) ppmv 03 Oxides of Nitrogen (NOx) ppmv	Date of	f Sampling: 17.07.2023	Sampling Plan & Pr	rocedure: CML	/STACK/SOP/	08
01 Stack Diameter 25 25 cm 02 Temperature 347 347 °C 03 Velocity 23.3 23.0 m/sec 04 Volume of Gas Discharged 1973 1943 Nm³/m 51. No. Test Parameters Test Method Results CPCB Norms Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA*2019) 50.7 75 mg/Nn 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 BDL (DL*3.0) ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/05 320 710 ppmv	Discipli	ine / Group: Chemical / Atmos	pheric Pollution			
O2 Temperature 347 347 °C 03 Velocity 23.3 23.0 m/sec 04 Volume of Gas Discharged 1973 1943 Nm³/h 51. No. Test Parameters Test Method Results CPCB Norms Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 50.7 75 mg/Nn 02 Sulphur-di-oxide (SO ₂) CML/STACK/SOP/05 BDL (DL: 3.0) ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/05 320 710 ppmv				Chimney 4	Chimnoy 2	Unit
02 Temperature 03 Velocity 23.3 23.0 m/sec 04 Volume of Gas Discharged 1973 1943 Nm³/h 51. No. Test Parameters Test Method Results CPCB Norms Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA·2019) 50.7 75 mg/Nn 02 Sulphur-di-oxide (SO ₂) CML/STACK/SOP/05 BDL (DL·3.0) ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/05 320 710 ppmv	SI. No.	Stac	sk Details	Cinininey-1	Chinney-2	CODY
03Volume of Gas Discharged19731943Nm³/h04Volume of Gas Discharged19731943Nm³/hSI. No.Test ParametersTest MethodResultsCPCB NormsUnit01Particulate MatterIS 11255 Part 1-1985 (RA·2019)50.775mg/Nn02Sulphur-di-oxide (SO2)CML/STACK/SOP/05BDL (DL·3.0)ppmv03Oxides of Nitrogen (NOx)CML/STACK/SOP/05320710ppmv			k Details	25	25	cm
Origonal Control of State Science getsTest MethodResultsCPCB NormsUnit01Particulate MatterIS 11255 Part 1-1985 (RA:2019)50.775mg/Nn02Sulphur-di-oxide (SO2)CML/STACK/SOP/05BDL (DL: 3.0)ppmv03Oxides of Nitrogen (NOx)CML/STACK/SOP/05320710ppmv	01	Stack Diameter	k Details	25 347	25 347	cm °C
SI. No. Test Parameters Test Method Results Norms Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA·2019) 50.7 75 mg/Nn 02 Sulphur-di-oxide (SO ₂) CML/STACK/SOP/05 BDL (DL·3.0) ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/05 320 710 ppmv	01 02 03	Stack Diameter Temperature Velocity		25 347 23.3	25 347 23.0	cm °C m/sec
02 Sulphur-di-oxide (SO ₂) CML/STACK/SOP/05 BDL (DL' 3 0) ppmv 03 Oxides of Nitrogen (NOx) ppmv	01 02 03	Stack Diameter Temperature Velocity		25 347 23.3	25 347 23.0 1943	cm °C m/sec
03 Oxides of Nitrogen (NOx) CML/STACK/SOP/05 320 710 ppmv	01 02 03 04	Stack Diameter Temperature Velocity Volume of Gas Discharged	1	25 347 23.3 1973	25 347 23.0 1943 CPCB Norms	cm °C m/sec Nm ³ /hi Unit
03 Oxides of Nitrogen (NOx) 320 /10 ppmv	01 02 03 04 51. No.	Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters	Test Method	25 347 23.3 1973 Results	25 347 23.0 1943 CPCB Norms	cm °C m/sec Nm ³ /hi Unit
04 Non-Methane Hydrocarbon CML/STACK/SOP/06 96 100 mg/Nn	01 02 03 04 51. No. 01	Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter	Test Method IS 11255 Part 1-1985 (RA-2019)	25 347 23.3 1973 Results 50 7	25 347 23.0 1943 CPCB Norms	cm °C m/sec Nm³/hi Unit
	01 02 03 04 51. No. 01 02	Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂)	Test Method IS 11255 Part 1-1985 (RA-2019)	25 347 23.3 1973 Results 50.7 BDL (DL: 3.0)	25 347 23.0 1943 CPCB Norms 75 	cm °C m/sec Nm ³ /hi Unit mg/Nm
	01 02 03 04 51. No. 01 02 03	Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO2) Oxides of Nitrogen (NOX)	Test Method IS 11255 Part 1-1985 (RA·2019) CML/STACK/SOP/05	25 347 23.3 1973 Results 50 7 BDL (DL' 3 0) 320	25 347 23.0 1943 CPCB Norms 75 710	cm °C m/sec Nm ³ /hi Unit mg/Nm ppmv
	01 02 03 04 51. No. 01 02 03 04	Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon	Test Method IS 11255 Part 1-1985 (RA·2019) CML/STACK/SOP/05 CML/STACK/SOP/06	25 347 23.3 1973 Results 50 7 BDL (DL' 3 0) 320 96	25 347 23.0 1943 CPCB Norms 75 710 100	cm °C m/sec Nm ³ /hr Unit Unit mg/Nm ppmv ppmv
	01 02 03 04 51. No. 01 02 03 04 05 06	Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO2) Oxides of Nitrogen (NOX) Non-Methane Hydrocarbon Carbon Monoxide as CO2	Test Method IS 11255 Part 1-1985 (RA·2019) CML/STACK/SOP/05	25 347 23.3 1973 Results 50 7 BDL (DL· 3 0) 320 96 116 7.9	25 347 23.0 1943 CPCB Norms 75 710 100 150	cm °C m/sec Nm³/hr Unit Unit mg/Nm ppmv ppmv ppmv mg/Nm mg/Nm
P. KAVITHA	01 02 03 04 SI. No. 01 02 03 04 05 06 07	Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID.No: CML/ENV/SM	Test Method IS 11255 Part 1-1985 (RA·2019) CML/STACK/SOP/05 CML/STACK/SOP/06 CML/STACK/SOP/05 CML/STACK/SOP/05 The of Report For the second	25 347 23.3 1973 Results 50 7 BDL (DL· 3 0) 320 96 116 7.9 11.0 Chennai Mette <i>Aurre</i> Reviewed & Aut	25 347 23.0 1943 CPCB Norms 75 710 100 150 - ex Lab Privat A horized By	cm °C Mr/sec Nm³/hr Unit Unit mg/Nm ppmv ppmv ppmv ppmv mg/Nm mg/Nm %

01 Particulate Matter 02 Nulles Plant Pla		THE A CHILD CHILD CHILD C	MI & CHI + CHI + CHL + CHL + CH	IL+ CML + CM	Le CMLe (ML + CMI
Web CHENNAL METTEX LAB PRIVATE LUMIDED John Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S3, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S0, M.K.N. Road, Guindy, Chemnal - 600 032 Image: Complex, S1, S1, S2, S2, S2, S2, S2, S2, S2, S2, S2, S2			District 044-22823163 22	2311034		
State Name State Complex, 83, M.K.N. Road. Guindy. Chennat - 600 030 State Instruction of the complex, 83, M.K.N. Road. Guindy. Chennat - 600 030 State State Instruction of the complex, 83, M.K.N. Road. Guindy. Chennat - 600 030 State State Instruction of the complex, 83, M.K.N. Road. Guindy. Chennat - 600 030 State State Instruction of the complex, 83, M.K.N. Road. Guindy. Chennat - 600 030 State State State Perivakalapet. Producherry - 605 014. T.C. Date : 22.07.2023 Date of Receipt: 18.07.2023 Instruction of the complex of the			42179490, 42	179491	ALL	
Instant Complex, 83, M.K.N. Roed, Guindy, Chennar - 600 032. Teste Description IEST REPORT Freedo: 7 47 ISSUED TO: M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, Puducherry - 605 014. T.C. Date : 22.07.2023 Periyakalapet, Puducherry - 605 014. T.C. No : CML/23-24/3162B Party's Ref : SRF Date: 18.07.2023: Date of Receipt: 18.07.2023 Lab No : 24034111 Test Completed on: 22.07.2023 Sample Description: Stack Emission - D.G- 1010 KVA Cummins testated by customer) Date of Sampling: 17.07.2023 Sample Description: Stack Emission - D.G- 1010 KVA Cummins testated by customer) Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Disciptine / Group: Chemical / Atmospheric Poliution Sil. No. Stack Details Chimmey-1 Outries of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Disciptime / Group: Chemical / Atmospheric Poliution Sil. No. Test Method Chemical Atmospheric Poliution <t< td=""><td>Heat</td><td></td><td>and the second sec</td><td>1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td>网络</td></t<>	Heat		and the second sec	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		网络
Jothi Complex, 83, M.K.N. Read, Guindy, Chennar-600 032. Teste Deckade of the second sec		CHENNAI ME	ttex lab private lim	ITED W		
TEST REPORT Prod. 7.47 ISSUED TO: M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, Puducherry – 605 014. T.C. Date :: 22.07.2023 Party's Ref :: SRF Date: 18.07.2023: Date of Receipt: 18.07.2023 Lab No :: 24034111 Test Completed on: 22.07.2023 Sample Description: Stack Emission – D.G- 1010 KVA Cummins (a stated by costoner) Date of Receipt: 18.07.2023 Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Poliution Stack Details Chimney-1 Chimney-2 Unit 01 Stack Discharged 1865 1831 Nm ³ M 02 Temperature 307 307 ~C 03 Volume of Gas Discharged 1865 (RA-2019) 45.3 71.9 pmg/Nm 04 Volume of Gas Discharged CML/STACK/SOP/05 BDL (DU: 3.0) — pmg/Nm 03 Oxdes of Nitrogen (NCx) CML/STACK/SOP/05 11.5 - % 04 Non-Methane Hydrocarbon CML/STACK/SOP/05 BDL (DU: 3.0) — ppm/N 04 Nohmetane Hydrocarbon CML/STACK/SOP/05 6.9 - % 05	Mel		And the second	1		
ISSUED TO: M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, Puducherry – 605 014. SRF Date: 18.07.2023: Lab No : 24034111 Test Completed on:22.07.2023 Sample Description: Stack Emission – D.G- 1010 KVA Cummins (as stated by customer) Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Poliution SI. No. Stack Details Other Stack Details Discipline / Group: Chemical / Atmospheric Poliution SI. No. Stack Details Other Stack Details Discipline / Group: Chemical / Atmospheric Poliution SI. No. Test Parameters Other Stack Details Discipline / Group: Chemical / Atmospheric Poliution SI. No. Test Parameters Other Stack Details Discipline / Group: Chemical / Atmospheric Poliution SI. No. Test Parameters SI. No. Test Parameters SI. No. Test Parameters Other Stack Discharged Other Stack Discharged Other Stack Discharged D	1 C	Jothi Complex, 83,	M.K.N. Road, Guindy, Chennai - 600) 032. т	C-5589	
ISSUED TO: M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, Puducherry – 605 014. SRF Date: 18.07.2023: Lab No : 24034111 Test Completed on:22.07.2023 Sample Description: Stack Emission – D.G- 1010 KVA Cummins (as stated by customer) Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Poliution SI. No. Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 307 307 cC 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1665 1831 Nm ³ hi 02 Temperature 307 307 cC 03 Velocity 01 1815 Part 1-1985 (RA-2019) 45.3 75 mg/Nm 04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nir 05 Carbon Monoxide as CO 06 Or Oxygen as O2 07 Oxygen as O2 08 Velocity CML/STACK/SOP/06 87 100 mg/Nir 09 Carbon Monoxide as CO 00 CML/STACK/SOP/06 87 100 mg/Nir 01 Carbon Monoxide as CO 02 CML/STACK/SOP/06 87 100 mg/Nir 03 Carbon Monoxide as CO 04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nir 05 Carbon Monoxide as CO 06 CML/STACK/SOP/06 87 100 mg/Nir 07 Oxygen as O2 07 Oxygen as O2 08 Otol: Instrument ID No. CML/ENV/SMK/07 CML/STACK/SOP/05 0111.5 - % Note: Instrument ID No. CML/ENV/SMK/07 CML/STACK/SOP/05 0111.5 - % Wote: Instrument ID No. CML/ENV/SMK/07 CML/STACK/SOP/05 011.5 - % Wote: Instrument ID No. CML/ENV/SMK/07 CML/STACK/SOP/05 011.5 - % Wote: Instrument ID No. CML/ENV/SMK/07 CML/STACK/SOP/05 01.11.5 - % Wote: Instrument ID No. CML/ENV/SMK/07 CML/STACK/SOP/05 0.9 CML/STACK/SOP/05 0.9 CML/STA	~					
ISSUED TO: M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, Puducherry - 605 014. Party's Ref : SRF Date: 18.07.2023: Lab No : 24034111 Test Completed on:22.07.2023 Sample Description: Stack Emission - D.G- 1010 KVA Cummins (estated by customer) Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Poliution SI. No. Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 307 307 cC 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1665 1831 Nm ³ hr 02 Temperature 307 307 cC 164 Volume of Gas Discharged 1665 1831 Nm ³ hr 02 Sulphur-di-oxide (SO ₂) 04 Volume of Gas Discharged CML/STACK/SOP/05 8DL (DL: 3.0) - ppm/v 03 Oxides of Nitrogen (NOX) 04 Non-Methane Hydrocarbon CML/STACK/SOP/05 8DL (DL: 3.0) - ppm/v 04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nir 05 Carbon Monoxide as CO: CML/STACK/SOP/06 87 100 mg/Nir 06 Carbon Monoxide as CO: CML/STACK/SOP/05 11.5 - % Note: Instrument ID No. CML/ENV/SMK/07 Trd of Report Trd of Report Trd of Report Trd of Report Trd of Report Trd of Report Note: Instrument ID No. CML/ENV/SMK/07 Note: Instrument I						3
ISSUED TO: Missional appet, Puducherry – 605 014. T.C. No : CML/23-24/31628 Party's Ref : SRF Date: 18.07.2023: Date of Receipt: 18.07.2023 Lab No : 24034111 Test Completed on: 22.07.2023 Sample Description: Stack Emission – D.G- 1010 KVA Cummins (as stated by costomer) Sampling Ptan & Procedure: CML/STACK/SOP/08 Disciptine / Group: Chemical / Atmospheric Pollution Sinck Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 307 307 "C "C 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm³/m 02 Temperature 307 307 "C 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1845 Norms Unit 01 Particulate Matter 1S 11255 Part 1-1985 (RA-2019) 45.3 75 mg/lm 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 336 71.0 ppm/v 04 Non-Methane Hydrocarbon CML/STACK/SOP/05 6.9 - % <tr< td=""><td></td><td></td><td>TEST REPORT</td><td>Pay</td><td>ge No.1 of 1</td><td></td></tr<>			TEST REPORT	Pay	ge No.1 of 1	
ISSUED TO: Missional appet, Puducherry – 605 014. T.C. No : CML/23-24/31628 Party's Ref : SRF Date: 18.07.2023: Date of Receipt: 18.07.2023 Lab No : 24034111 Test Completed on: 22.07.2023 Sample Description: Stack Emission – D.G- 1010 KVA Cummins (as stated by customer) Sampling Ptan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Pollution Sinck Diameter 25 orn Stack Diameter 307 307 **C 03 07 307 **C 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm³/m 05 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 336 710 ppm/ 04 Non-Methane Hydrocarbon CML/STACK/SOP/05 336 710 ppm/ 05 Carbon Minoxide as CO CML/STACK/SOP/05 6.9			Discome Sciences Ltd T	C Date 22	07.2023	
Puducherry – 605 014. T. C. No : CML/23-24/31628 Party's Ref : SRF Date: 18.07.2023: Date of Receipt: 18.07.2023 Lab No : 24034111 Test Completed on: 22.07.2023 Sample Description: Stack Emission – D.G- 1010 KVA Cummins (as stated by costomer) Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Pollution Sampling Plan & Procedure: CML/STACK/SOP/08 Si No. Stack Details Chimney-1 O1 Stack Diameter 25 25 O2 Temperature 307 °C O3 Velocity 20.6 20.3 mrssec O4 Volume of Gas Discharged 1865 1831 Nm ⁴ hn Si. No. Test Parameters Test Method Results CPCB Unit O4 Volume of Gas Discharged CML/STACK/SOP/05 336 710 ppmv O3 Oxides of Nitrogen (NCx) CML/STACK/SOP/06 87 100 mg/him O4 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/him O5 Carbon dioxide as CO CML/STACK/SOP/06 87 10	ISSUE		Filamia Sciences Lid,	.0 2010		
Party's Ref SRF Date: 18.07.2023: Date of Receipt: 18.07.2023 Lab No : 24034111 Test Completed on:22.07.2023 Sample Description: Stack Emission – D.G- 1010 KVA Cummins (a stated by customer) Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Pollution Stack Data / Atmospheric Pollution Stack Data / Stack Data / Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 007 rc 03 Velocity 0307 020, m//sec 04 Volume of Gas Discharged 10865 1831 Nm ³ Nr 04 Volume of Gas Discharged 10865 1831 Nm ³ Nr 05 Sulphur-di-oxide (SO ₂) CML/STACK/SOP/05 307 rg / ppmv 03 Oxides of Nitrogen (NCx) CML/STACK/SOP/05 336 710 ppmv 04 Non-Methane Hydrocarbon CML/STACK/SOP/05 336 710 ppmv 05 Carbon Monoxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 111 150 mg/Nm 06 Carbon Monoxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 111 50 mg/Nm 08 Carbon Monoxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 111 50 mg/Nm 08 Carbon Monoxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 111 50 mg/Nm 08 Carbon Monoxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 111 50 mg/Nm 08 Carbon Minoxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 111 50 mg/Nm 08 Carbon Monoxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 111 50 mg/Nm 09 Charbon dioxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 111 50 mg/Nm 08 Carbon Monoxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 111 50 mg/Nm 08 Carbon Minoxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 111 50 mg/Nm 08 Carbon Minoxide as CO 07 Oxygen as O2 CML/STACK/SOP/05 1115 - % Withoused Signatory 08 Carbon Minoxide as CO 09 CML/STACK/SOP/05 111 50 mg/Nm 09 Carbon Minoxide as CO 00 CML/STACK/SOP/05 111 50 mg/Nm 09 Carbon Minoxide as CO 00 CML/STACK/SOP/05 111 50 mg/Nm 19 Carbon Minoxide as CO 111 Dis Dis Dis CML/ENV/SMK/07 CML/STACK/SOP/05 111 150 mg/Nm 19 Carbon Minoxide as CO 111 Dis Dis Dis Dis Dis CML/STACK/SOP/05 111 Dis		•	14 T	C No : CN	VL/23-24/31	628
Lab No : 24034111 Test Completed on:22.07.2023 Sample Description: Stack Emission – D.G- 1010 KVA Cummins (as stated by customer) Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Poliution Stack Datalis Chimney-1 Chimney-2 Unit 01 Stack Diameter 20.6 20.3 m/sec 02 Temperature 307 307 °C 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm³/hr 02 Test Parameters Test Method Results CPCB Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA-2019) 45.3 75 mg/hr 03 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 336 710 ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/06 87 100 mg/hr 04 Non-Methane Hydrocarbon CML/STACK/SOP/05 6.9		Publicheny = 003 (, j., j., j., j., j., j., j., j., j., j.			
Lab No : 24034111 Test Completed on:22.07.2023 Sample Description: Stack Emission – D.G- 1010 KVA Cummins (se stated by customer) Sampling Plan & Procedure: CML/STACK/SOP/08 Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline / Group: Chemical / Atmospheric Poliution Stack Diameter 25 25 orn 02 Temperature 307 307 °C orn 02 Temperature 307 307 °C orn 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm³/hr 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 375 mg/hr 03 Oxdes of Nitrogen (NOx) CML/STACK/SOP/05 336 710 ppmv 04 Non-Methane Hydrocarbon CML/STACK/SOP/05 6.9	Partvia	Ref SRF Date: 18.07.0	023: E	Date of Receip	t: 18.07.202	23
Sample Description: Stack Emission – D.G. 1010 KVA Cummins (as stated by customer) Date of Sampling: 17.07.2023 Sampting Plan & Procedure: CML/STACK/SOP/08 Disciptine / Group: Chemical / Atmospheric Poliution Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 02 Temperature 307 307 °C 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm³/n 02 Suphture of Gas Discharged 1865 1831 Nm³/n 04 Volume of Gas Discharged CML/STACK/SOP/05 BDL (DL: 3.0)	arrys					
(a stated by customer) Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/05 SI. No. Stack Details Chimney-1 Chimney-2 Unit Chimney-2 Chimney-2 Unit Chimney-1 Chimney-1 Chimney-2 Unit Chimney-1 Chimney-1 Chimney-2 Unit Chimney-1 Chimney-2 Unit Chimney-1 Chimn	Lab No	: 24034111	т	est Completed	on:22.07.2	023
(a stated by customer) Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/05 SI. No. Stack Details Chimney-1 Chimney-2 Unit Chimney-2 Chimney-2 Unit Chimney-1 Chimney-1 Chimney-2 Unit Chimney-1 Chimney-1 Chimney-2 Unit Chimney-1 Chimney-2 Unit Chimney-1 Chimn						
Date of Sampling: 17.07.2023 Sampling Plan & Procedure: CML/STACK/SOP/05 Discipline / Group: Chemical / Atmospheric Poliution Si. No. Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 02 Temperature 307 307 °C 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm?hin 01 Particulate Matter 1S 11255 Part 1-1985 (RA 2019) 45.3 75 mg/Nm 01 Particulate Matter 1S 11255 Part 1-1985 (RA 2019) 45.3 75 mg/Nm 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 BDL (DL: 3.0) - ppmv 03 Oxides of Nitrogen (NOX) CML/STACK/SOP/05 87 100 mg/Nm 05 Carbon Monoxide as CO2 CML/STACK/SOP/05 111 150 mg/Nm 06 Carbon Monoxide as CO2 CML/STACK/SOP/05 6.9 - % 07 Oxygen as O2 Third of Report	Sampl	le Description: Stack Emi:	ssion – D.G- 1010 KVA Cummir	IS		
Discipline / Group: Chemical / Atmospheric Poliution Si. No. Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 02 Temperature 307 307 °C 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm³/hit 01 Particulate Matter IS 11255 Part 1-1985 (RA-2019) 45.3 75 mg/Nm 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 BDL (DL: 3.0)	-					2/0:9
Sl. No. Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 02 Temperature 307 307 °C 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm*/m Sl. No. Test Parameters Test Method Results CPCB Norms Unit 01 Particulate Matter 1S 11255 Part 1-1985 (RA 2019) 45.3 75 mg/Nm 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 BDL (DL: 3.0) ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/06 87 100 mg/Nm 04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nm 05 Carbon dioxide as CO2 CML/STACK/SOP/06 87 100 mg/Nm 05 Carbon dioxide as CO2 CML/STACK/SOP/05 11.5 % 06 Carbon dioxide as CO2 Thi of Report % Mo Wolte: Instrument ID No: CML	Date o	of Sampling: 17.07.2023	Sampling Plan & Pr	ocedure: GML	STAUNOU	-100
Sl. No. Stack Details Chimney-1 Chimney-2 Unit 01 Stack Diameter 25 25 cm 02 Temperature 307 307 °C 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm*/m Sl. No. Test Parameters Test Method Results CPCB Norms Unit 01 Particulate Matter 1S 11255 Part 1-1985 (RA 2019) 45.3 75 mg/Nm 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 BDL (DL: 3.0) ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/06 87 100 mg/Nm 04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nm 05 Carbon dioxide as CO2 CML/STACK/SOP/06 87 100 mg/Nm 05 Carbon dioxide as CO2 CML/STACK/SOP/05 11.5 % 06 Carbon dioxide as CO2 Thi of Report % Mo Wolte: Instrument ID No: CML	Discipi	line (Group: Chemicai / Atmo	soperic Poliution			
St. No. Date is both of the second 01 Stack Diameter 25 25 cm 02 Temperature 307 307 °C 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm³/htt 01 Particulate Matter IS 11255 Part 1-1985 (RA 2019) 45.3 75 mg/Nm 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 BDL (DL: 3.0) - ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/05 BDL (DL: 3.0) - ppmv 04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nm 05 Carbon Monoxide as CO2 CML/STACK/SOP/05 111 150 mg/Nm 06 Carbon Monoxide as CO2 CML/STACK/SOP/05 111 150 mg/Nm 07 Oxygen as O2 CML/STACK/SOP/05 6.9 - % 07 Oxygen as O2 Third of Report - %				Chimney 4	Chimney-2	Lloit
01 Stack Diameter 02 Temperature 03 Velocity 04 Volume of Gas Discharged 01 Particulate Matter 15 11255 Part 1-1985 (RA 2019) 02 Sulphur-di-oxide (SO2) 03 Oxides of Nitrogen (NOx) 04 Non-Methane Hydrocarbon 05 Carbon Monoxide as CO 06 Carbon Monoxide as CO 07 Oxygen as O2 Note: Instrument ID No: CML/ENV/SMK/07 For Chennal Metter Lab Private Limit For Chennal Metter Lab Private Limit Authorized By P. KAVITHA Technical Manager Authorized Signatory	SI. No.		ack Details			
02 Temperature 00. 20.6 20.3 m/sec 03 Velocity 20.6 20.3 m/sec 04 Volume of Gas Discharged 1865 1831 Nm³/hr 01 Particulate Matter IS 11255 Part 1-1985 (RA 2019) 45.3 75 mg/Nm 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 BDL (DL: 3.0) ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/06 87 100 mg/Nm 05 Carbon Monoxide as CO CML/STACK/SOP/06 87 100 mg/Nm 06 Carbon dioxide as CO2 CML/STACK/SOP/05 6.9 % 07 Oxygen as O2 CML/STACK/SOP/05 111 150 mg/Nm For Chennal Mettex Lab Private Limit Jund of Report						
03 Vetocity 1865 1831 Nm³/hr 04 Volume of Gas Discharged 1865 1831 Nm³/hr 04 Volume of Gas Discharged Test Method Results CPCB Norms Unit 01 Particulate Matter 15 11255 Part 1-1985 (RA 2019) 45.3 75 mg/Nm 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 BDL (DL: 3.0)						
Odd Volume of Gas Discharged CPCB Norms Unit SI. No. Test Parameters Test Method Results CPCB Norms Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 45.3 75 mg/Nm 02 Sulphur-di-oxide (SO2) CML/STACK/SOP/05 BDL (DL: 3.0) — ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/05 87 100 mg/Nm 04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nm 05 Carbon Monoxide as CO CML/STACK/SOP/05 6.9 % 06 Carbon dioxide as CO2 CML/STACK/SOP/05 6.9 % 07 Oxygen as O2 CML/STACK/SOP/05 6.9 % Note: Instrument ID No: CML/ENV/SMK/07						
SI. No. Test Parameters Test Method Results Norms Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 45.3 75 mg/Nm 02 Sulphur-di-oxide (SO ₂) CML/STACK/SOP/05 BDL (DL: 3.0) ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/06 87 100 mg/Nm 04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nm 05 Carbon Monoxide as CO CML/STACK/SOP/06 87 100 mg/Nm 06 Carbon dioxide as CO2 CML/STACK/SOP/05 6.9 % 07 Oxygen as O2 CML/STACK/SOP/05 11.1 150 mg/Nm Note: Instrument ID No: CML/ENV/SMK/07 For Chennal Mettex Lab Private Limit Weilewed & Authorized By P. KAVITHA Technical Manager Authorized By P. KAVITHA Technical Manager Authorized Signatory NOTE: Any unsubsched Alternium, longery or fabilitation of the content of appendice of the dote content of a cont	04	Volume of Gas Discharged		1000		
OT Particulate Matter IS Proceeded Processing Control (Control (Contro) (Control (Contro) (Control (Control (Cont	SI. No.	Test Parameters	Test Method	Results		Unit
02 CML/STACK/SOP/05 336 719 ppmv 03 Oxides of Nitrogen (NOx) CML/STACK/SOP/06 87 100 mg/Nim 04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nim 05 Carbon Monoxide as CO CML/STACK/SOP/06 87 100 mg/Nim 06 Carbon dioxide as CO2 CML/STACK/SOP/05 6.9 % 07 Oxygen as O2 CML/STACK/SOP/05 6.9 % Note: Instrument ID No: CML/ENV/SMK/07 For Chennal Mettex Lab Private Limit Jund of Report For Chennal Mettex Lab Private Limit Jund of Report For Chennal Mettex Lab Private Limit Jund of Report For Chennal Mettex Lab Private Limit Jund of Report For Chennal Mettex Lab Private Limit Jund of Report For Chennal Mettex Lab Private Limit Jund of Report For Chennal Mettex Lab Private Limit Jund of Report	01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	45 3	75	mg/Nm ³
03 Oxides of Nitrogen (NOx) CML/STACK/SOP/05 336 719 ppmv 04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nm 05 Carbon Monoxide as CO 0 111 150 mg/Nm 06 Carbon dioxide as CO2 CML/STACK/SOP/05 6.9 - % 07 Oxygen as O2 CML/STACK/SOP/05 6.9 - % Note: Instrument ID No: CML/ENV/SMK/07 Tot of Report For Chennal Mettex Lab Private Limit Wote: Ind of Report For Chennal Mettex Lab Private Limit Wote: Instrument ID No: CML/ENV/SMK/07 For Chennal Mettex Lab Private Limit Wote: Multiple State of the content of appendix of the content o	02	Sulphur-di-oxide (SO ₂)		BDL (DL: 3.0)		ppmv
04 Non-Methane Hydrocarbon CML/STACK/SOP/06 87 100 mg/Nm 05 Carbon Monoxide as CO 111 150 mg/Nm 06 Carbon dioxide as CO2 CML/STACK/SOP/05 6.9 % 07 Oxygen as O2 CML/STACK/SOP/05 6.9 % Note: Instrument ID No: CML/ENV/SMK/07 For Chennal Mettex Lab Private Limit Junt of Report For Chennal Mettex Lab Private Limit Junt of Report For Chennal Mettex Lab Private Limit Junt of Report For Chennal Mettex Lab Private Limit Junt of Report For Chennal Mettex Lab Private Limit Junt of Report For Chennal Mettex Lab Private Limit Junt of Report Work and the compatibility of the state o			CML/STACK/SOP/05	336	710	ppmv
04 Hormatina Hydrodal Boh Control of Report 05 Carbon Monoxide as CO CML/STACK/SOP/05 111 150 mg/Nm 06 Carbon dioxide as CO2 CML/STACK/SOP/05 6.9 % 07 Oxygen as O2 CML/STACK/SOP/05 6.9 % Note: Instrument ID No: CML/ENV/SMK/07 For Chennal Mettex Lab Private Limit For Chennal Mettex Lab Private Limit Mote: Instrument ID No: CML/ENV/SMK/07 For Chennal Mettex Lab Private Limit Mote: Authorized By P. KAVITHA Technical Manager Authorised Signatory				97	400	ma/him?
03 Carbon dioxide as CO2 CML/STACK/SOP/05 6.9 - % 06 Carbon dioxide as CO2 CML/STACK/SOP/05 6.9 - % 07 Oxygen as O2 Note: Instrument ID No: CML/ENV/SMK/07 - % For Chennal Mettex Lab Private Limit Wote: Instrument ID No: CML/ENV/SMK/07 For Chennal Mettex Lab Private Limit Wote: Mathematical alternation of Report For Chennal Mettex Lab Private Limit Authorized By P. KAVITHA Technical Manager Authorized alternation, forgery or tabilitication, of the connent or appearance of this document is unleaved and offenders will be lable for legal action. L NOTE Any unauthorized alternation, forgery or tabilitication, of the connent or appearance of this document is unleaved and offenders will be lable for legal action. L	04	Non-Methane Hydrocarbon	CML/STACK/SOP/06			
06 Carbon dockde as CO2 07 Oxygen as O2 Note: Instrument ID No: CML/ENV/SMK/07 For Chennal Mettex Lab Private Limit Juit of Report For Chennal Mettex Lab Private Limit Juit of Report For Chennal Mettex Lab Private Limit Juit of Report For Chennal Mettex Lab Private Limit Juit of Report For Chennal Mettex Lab Private Limit Juit of Report For Chennal Mettex Lab Private Limit Juit of Report Reviewed & Authorized By Juit of Report NOTE Any unauthorized alteration, forgery or tabilitation of the compet for a sprestance of this document is unleaded and oth		Carbon Monoxide as CO		111	150	mg/Nm ³
07 Oxygen as O2 11.5 - % Note: Instrument ID No: CML/ENV/SMK/07 For Chennal Mettex Lab Private Limit June For Chennal Mettex Lab Private Limit June WOTE Any unautherized alteration, forgery or Idetification, of the compett or appearance of this document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is document is enlawful and alterators will be liable for legal action. It is dow only form the competition is the document is enlawful on the competition is down on the competition is the document is enlawful on the document is enlawful on the competition is the document is enlawfu	05					%
Note: Instrument ID No: CML/ENV/SMK/07 Thid of Report For Chennal Mettex Lab Private Limit More Any unautherized alternation, forgery or tabilitation of the convert or appearance of this decument is unlimited and offenders will be liable for legal action. U			CML/STACK/SOP/05	6.9	N HH	
The of Report For Chennal Mettex Lab Private Limit Additional Mettex	06	Carbon dioxide as CO ₂	CML/STACK/SOP/05			
NOTE Any unautherized alteration, forgery or tubilitation of the concept or appearance of this decument is unlawful and offenders will be liable for legal action. U	06 07	Carbon dioxide as CO ₂ Oxygen as O ₂				
P. KAVITHA Technical Manager Authorised Signatory NOTE: Any unautherized alteration, forgery or tabilitation of the convert or appearance of this document is unlawful and offenders will be liable for legal action. U	06 07	Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID No: CML/ENV/S	SMK/07 	11.5		%
P. KAVITHA Technical Manager Authorised Signatory NOTE: Any unautherized alteration, forgery or liabilitation of the convert or appearance of this document is unlawful and offenders will be liable for legal action. U	06 07	Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID No: CML/ENV/S	SMK/07 	11.5		%
P. KAVITHA Technical Manager Authorised Signatory NOTE: Any unauthorized alteration, forgery or tabilitration of the competition of this document is unlawful and offenders will be liable for legal action. U	06 07	Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID No: CML/ENV/S	SMK/07 	11.5		%
P. KAVITHA Technical Manager Authorised Signatory NOTE: Any unautherized alteration, forgery or liabilitation of the convert or appearance of this document is unlawful and offenders will be liable for legal action. U	06 07	Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID No: CML/ENV/S	SMK/07 	11.5		%
Technical Manager Authorised Signatory NOTE: Any unautherized alteration, forgery or tabilitation of the convert or appearance of this document is unlawful and offenders will be liable for legal action. U	06 07	Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID No: CML/ENV/S	SMKJ07 	11.5 Chennai Mette	ex Lab Priv	%
Authorised Signatory NOTE: Any unauthorized alteration, forgery or tabilitation of the convert or appearance of this document is unlawful and offenders will be liable for legal action. U	06 07	Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID No: CML/ENV/S	SMKJ07 	11.5 Chennai Mette Auro Reviewed & Auto	ex Lab Priv	%
NOTE: Any unauthorized alteration, forgery or indiffication of the content or appearance of this document is unlewful and affenders will be liable for legal action. U	06 07	Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID No: CML/ENV/S	SMKJ07 	11.5 Chennai Mette Autor Reviewed & Autor P. KAVITE	ex Lab Priv	%
	06 07	Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID No: CML/ENV/S	SMKJ07 	11.5 Chennai Mette Auco Reviewed & Auti P. KAVITH Technica: Man	ex Lab Priv D horized By	%
	06 07 Note:	Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID No: CML/ENV/	SMK/07 Ind of Report For	11.5 Chennai Mette Auto Reviewed & Auto P. KAVITH Technica: Man Authonsed Sign	ex Lab Priv horized By HA hager natory	% ate Limited
offernoise stated the submitted results in this test report refer only to the subject before a specific period as per stateory requirement; while penshable & environmental testing in testing , except in case of regulatory samples, which will be retained for a specific period as per stateory requirement; while penshable & environmental testing in infriment samples will be decarded, consequent upon completion of testing. Samples are not drawn to us unless otherwise stated. This document cannot be repre- tiverent samples will be decarded, consequent upon completion of testing. Samples are not drawn to us unless otherwise stated. This document cannot be repre- fixeept in full, writes a pear written approval of the laboratory. This report is for the exclusive use of Chernal Mottrey Leb s criticities, and is provided is accordance.	06 07 Note:	Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID No: CML/ENV/S	SMK/07 	11.5 Chennai Mette Auto Reviewed & Auto P. KAVITH Technica: Man Authonsed Sign contextul and offenders	ex Lab Prive horized By HA hager natory	% ate Limited

ML • CML • CM • CML • CM • CML • CM
2023 3-24/3162.7 .07.2023 22.07.2023
2023 3-24/31627 .07.2023 22.07.2023
2023 3-24/31627 .07.2023 22.07.2023
2023 3-24/3162.7 .07.2023 22.07.2023
2023 3-24/31627 .07.2023 22.07.2023
3-24/3162.7 .07.2023 :22.07.2023
.07.2023
22.07.2023
CK/SOP/08
CK/SOP/08
ney-2 Unit
25 cm
51 °C
.0 m/sec
15 Nrm³/hr
CB ms Unit
5 mg/Nm ³
- ppmv
10 ppmv
00 mg/Nm ³
50 mg/Nm ³
~ %
- %
6 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

	MU & UMU & UMU & FUIL & A	IL . CML . CML . CML . CML . C	LIF. CLIF . CI	IL & CLIE	
E-mail Web-	: test®mettexlab.com : www.mettexlab.com	Phone . 044-22323163. 2 42179490. 4	2311034	ALL ROAD	
		ITEX LAB PRIVATE LIM	IITED° 🔇	56	
Mel		A DESCRIPTION OF A DESC	<u></u>	C-5589	回致起来的
	Jothi Complex, 83.	M.K.N. Road, Guindy, Chennai - 60	I	C+0088	
		TEST REPORT	Pa	ge No.1 of 1	
ISSUE	D TO : M/s. Solara Active I	Pharma Sciences Ltd,	T.C Date : 22	.07.2023	
	Periyakalapet, Puducherry – 605 0	14.	T.C. No : CI	ML/23-24	/31626
Party's	Ref : SRF Date: 18.07.20	023:	Date of Receip	pt: 18.07.	2023
Lab No	:24034109		Test Complete	ed on:22.	07.2023
	e Description: Stack Emis	sion – D.G- 1010 KVA Caterpi	llar		
	D by customer)				
•	f Sampling: 17.07.2023				
Date o	f Sampling: 17.07.2023 ng Plan & Procedure: CML/S	TACK/SOP/08 Discipline / Gro	up: Chemical I /	Atmosphe	ric Pollution
Date o Sampli	* —	TACK/SOP/08 Discipline / Gro Stack Details	up: Chemical I /	Atmosphe	ric Pollution Unit
Date o Sampli	* —	No	25	Atmosphe	Unit cm
Date o Sampli SI. No.	ng Plan & Procedure: CML/S	No	25 332	Atmosphe	Unit cm °C
Date o Sampli SI. No. 01 02 03	ng Plan & Procedure: CML/S Stack Diameter Temperature Velocity	No	25 332 33.3	Atmosphé	Unit cm °C m/sec
Date o Sampli SI. No. 01 02	ng Plan & Procedure: CML/S Stack Diameter Temperature	No	25 332		Unit cm °C
Date o Sampli SI. No. 01 02 03 04	ng Plan & Procedure: CML/S Stack Diameter Temperature Velocity	Stack Details Test Method	25 332 33.3 2883 Results	CPCB	Unit cm °C m/sec Nm ³ /hr Unit
Date o Sampli Sl. No. 01 02 03 04	ng Plan & Procedure: CML/S Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter	Stack Details	25 332 33.3 2883 Results 51.9	CPCB	Unit cm °C m/sec Nm ³ /hr Unit mg/Nm ³
Date o Sampli SI. No. 01 02 03 04 SI. No.	ng Plan & Procedure: CML/S Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters	Stack Details Test Method IS 11255 Part 1-1985 (RA:2019)	25 332 33.3 2883 Results 51.9 BDL (DL: 3.0)	CPCB Norms 75 	Unit cm °C m/sec Nm³/hr Unit mg/Nm³ ppmv
Date o Sampli Sl. No. 01 02 03 04 Sl. No. 01	ng Plan & Procedure: CML/S Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter	Stack Details Test Method	25 332 33.3 2883 Results 51.9	CPCB Norms 75	Unit cm °C m/sec Nm ³ /hr Unit mg/Nm ³
Date o Sampli Sl. No. 01 02 03 04 Sl. No. 01 02	ng Plan & Procedure: CML/S Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂)	Stack Details Test Method IS 11255 Part 1-1985 (RA:2019)	25 332 33.3 2883 Results 51.9 BDL (DL: 3.0)	CPCB Norms 75 	Unit cm °C m/sec Nm³/hr Unit mg/Nm³ ppmv
Date o Sampli Sl. No. 01 02 03 04 Sl. No. 01 02 03	ng Plan & Procedure: CML/S Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx)	Stack Details Test Method IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	25 332 33.3 2883 Results 51.9 8DL (DL: 3.0) 327	CPCB Norms 75 710	Unit cm °C m/sec Nm ³ /hr Unit mg/Nm ⁵ ppmv
Date o Sampli Sl. No. 01 02 03 04 Sl. No. 01 02 03 04	ng Plan & Procedure: CML/S Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxídes of Nitrogen (NOx) Non-Methane Hydrocarbon	Stack Details Test Method IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	25 332 33.3 2883 Results 51.9 BDL (DL: 3.0) 327 94	CPC8 Norms 75 710 100	Unit cm °C m/sec Nm ³ /hr Unit mg/Nm ⁵ ppmv ppmv
Date o Sampli Sl. No. 01 02 03 04 Sl. No. 01 02 03 04 03 04 05	ng Plan & Procedure: CML/S Stack Diameter Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO	Stack Details Test Method IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 CML/STACK/SOP/06	25 332 33.3 2883 Results 51.9 8DL (DL: 3.0) 327 94 112	CPC8 Norms 75 710 100 150	Unit cm °C m/sec Nm³/hr Unit Unit mg/Nm³ ppmv ppmv mg/Nm³

			42179490, 421	®	
Me	CHENNAI M	IETTEX LAB PRIVAT		U Y	All
. C	Jothi Complex, 8	33, M.K.N. Road, Guindy, Chenn	nai - 600 032		ŢC-5569
		TEST REPORT	Page 0	No.1 of 1	
ISSUE	ED TO : M/s. Solara Active P	harma Sciences Ltd, T.C	Date : 21.04	4.2023	
	Periyakalapet,				
	Puducherry – 605 01	4. T.C	No :CML/	23-24/529	98
Party'	s Ref : SRF Date: 16.04.20	23 Da	te of Receipt:	16.04.202	23
Lab N	o : 24004233	Tes	st Completed o	on: 21.04.	2023
		ion D.C. 1010 KVA Cotornillo	,		
	ie Description: Stack Emiss ad by customer)	ion – D.G- 1010 KVA Caterpillaı	I		
Date of	of Sampling: 15.04.2023				
Sampl	ing Plan & Procedure: CML/ST	ACK/SOP/08 Discipline / Group:	Chemical / Atm	nospheric I	Pollution
SI. No.		Stack Details			Unit
01	Stack Diameter		25		• cm
02	Temperature		325		°C
03	Velocity		32.1		m/sec Nm ³ /hr
04 SI. No.	Volume of Gas Discharged Test Parameters	Test Method	Results	CPCB Norms	Unit
01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	51.6	75	mg/Nm ³
02	Sulphur-di-oxide (SO2)		BDL (DL: 3.0)	1993	ppmv
03	Oxides of Nitrogen (NOx)		321	710	ppmv
04	Non-Methane Hydrocarbon		63	100	mg/Nm ³
05	Carbon Monoxide as CO	CML/STACK/SOP/05	105	150	mg/Nm ³
06	Carbon dioxide as CO ₂		7.4		%
07	Oxygen as O ₂		10.9		%
Note:	Instrument ID.No: CML/ENV/SM	K/07 End of Report			
11	**************************************		ennai Mettex I	Lab Priva	te Limited,
			Aleren	ON	
		Rev	riewed & Authori	zed By	
			P. KAVITH		243
			Technical Mana Authorised Sign		
			righterioed orga	atory 👘	
					e 14
TE: Any una	uthorized alteration, forgery or falsification of	the content or appearance of this document is unla only to the sample(s) tested and such sample(s) are	awful and offenders w	rill be liable for	legal action. U

ĩ

.

÷

0	CMIL® CMI	. • CML • CML • CML • CML	● CML ● CML ● CML ● CML ● CM	1L● CML ● C	ML® CML @	CML . CI	ML
W		st@mettexlab.com w.mettexlab.com	Phone : 044	l-22323163, 2 42179490, 4			
CML e	VE	CHENNAI M	IETTEX LAB PRIVAT	'E LIMIT	ED	88	
0	VIE		83, M.K.N. Road, Guindy, Cher		A CONTRACTOR OF	TC-5589	
e CML		<u> </u>					
CML							
0			TEST REPORT	Jage	No. 1 of 1		
e CML	ISSUE	D TO : M/s. Solara Active P	harma Sciences Ltd, T.C	Date : 21.	04.2023	·+	
CML		Periyakalapet, Puducherry – 605 01	4. T.C	C No :CM	L/23-24/529	9	
CML @	Party's	Ref : SRF Date: 16.04.20	23 Da	te of Receipt	: 16.04.2023	, ,	
•	Lab No	o : 24004234	Tes	st Completed	on: 21.04.20	023	
CML			ion – D.G- 1500 KVA Caterpilla	r			
al o		d by customer) of Sampling: 15.04.2023	Sampling Plan & Pro	cedure: CML/	STACK/SOP/	/08	-
• CML		ine / Group: Chemical / Atmosp					
CML	SI. No.		ck Details	Chimney-1	Chimney-2	Unit	
0	01	Stack Diameter		25	25	cm	l
	02	Temperature		337	337	°C	1
B	03	Velocity		22.3	21.9	m/sec	
•	04	Volume of Gas Discharged		1913	1882	Nm³/hr	
MU	SI. No.	Test Parameters	Test Method	Results	CPCB Norms	Unit	
L.	01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	52.4	75	mg/Nm ³	
B	02	Sulphur-di-oxide (SO2)		BDL (DL: 3.0)		vmqq	
•	03	Oxides of Nitrogen (NOx)		328	710	ppmv	
B	04	Non-Methane Hydrocarbon	CML/STACK/SOP/05	79	100	mg/Nm ³	
4F @	05	Carbon Monoxide as CO	-	108	150	mg/Nm ³	
B	06	Carbon dioxide as CO ₂	_	9.1 9.8		%	
0	07	Oxygen as O ₂	V/07	9.0	1	70	
UM	n		Ind of Report				
0			For Cl	hennai Mette	x Lab Private	e Limited,	15
CML				M	0		
0				Alum	- M		
CML			F	eviewed & Aut	*	-ak	
				P. KAVI Technical W			
0				Authorised S			
CML					÷		
•							
L L	NOTE: Anu una	thorized alteration forment or falsification o	f the content or appearance of this document is un	lauful and offendar	s will be liable for 1	egal action - Élok	
	otherwise stated th	ne submitted results in this test report refer	only to the sample(s) tested and such sample(s) a	re retained for 15 d	lays only from the	completion date	of
n n	emnant samples v	will be discarded consequent upon complet	retained for a specific period as per statutory requi ion of testing. Samples are not drawn by us unles . This report is for the exclusive use of Chennai M	is otherwise stated.	This document car	nnot be reproduc	ed
フレ	he agreement bet	ween Chennai Mettex Lab and its Customer					
• ¢	ML® CML	CML @ CML @ CML @ CML	◎ CML ◎ CML ◎ CML ◎ CML ◎ CI	ILO CMLO	CML® CML		ML (
						CML/LAB/F	15 14

• 6	ML . CML	● CML ● CML ● CML ● CML	e CWF e CWF e CWF e CWF e Ch	IL & CUT &	CHL CHL	o curer
		st@mettexlab.com	Phone : 044	-22323163,		ंग्रीमीधन क्र
	Web : wv	ww.mettexlab.com		42179490,	42179491	
CML	1	CUENNOI N	ACTTEV I GD DDIVGT		ren [©]	(38)
	Ne		IETTEX LAB PRIVAT	e fill	IEV	भारत
0	616	Jothi Complex	83, M.K.N. Road, Guindy, Chen	mai - 600 ()32	TC-5589
			Co, Filini Frond, Cullidy, Chen			
			TEST REPORT	P	age No. 1 of 1	3
- LIF				<u>p</u> -	3-0/ 7	
	ISSUE	D TO : M/s. Solara Active P	harma Sciences Ltd, T.C	Date : 21	1.04.2023	
		Periyakalapet,				NO.
		Puducherry – 605 01	4. 1.0	C No :CN	ML/23-24/530	0
	Party's	Ref : SRF Date: 16.04.20	23 Da	te of Receip	ot: 16.04.202	3
68 I.Ke	*				04 04 f	0000
	Lab No	: 24004235	Te	est Complete	ed on: 21.04.2	2023
	Sampl	e Description: Stack Emiss	sion – D.G- 1010 KVA Cummins	i		
		d by customer)				
	Date o	f Sampling: 16.04.2023	Sampling Plan & Proc	cedure: CML	JSTACK/SOP/	/08
	Dissipli	ine / Group: Chemical / Atmos	aboria Balkution			
	Discipi	ine / Group: Chemical / Atmos	Shenc Policiush			
	SI. No.	Sta	ck Details	Chimne y-1	Chimney-2	Unit
	1					
- 1 - 1	01	Stack Diameter		25	25	cm
- 1 - 1	01 02	Stack Diameter Temperature			25 326	cm ∘C
100		Temperature Velocity		25 326 24.1	326 23.6	∘C m/sec
	02	Temperature		25 326	326 23.6 2066	°C
	02 03	Temperature Velocity	Test Method	25 326 24.1	326 23.6 2066	∘C m/sec
	02 03 04	Temperature Velocity Volume of Gas Discharged	Test Method IS 11255 Part 1-1985 (RA:2019)	25 326 24.1 2109	326 23.6 2066 CPCB	°C m/sec Nm ³ /hr
	02 03 04 SI. No.	Temperature Velocity Volume of Gas Discharged Test Parameters		25 326 24.1 2109 Results	326 23.6 2066 CPCB Norms 75	°C m/sec Nm³/hr Unit
	02 03 04 SI. No. 01	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter		25 326 24.1 2109 Results 48.7	326 23.6 2066 CPCB Norms 75	°C m/sec Nm ³ /hr Unit mg/Nm ³
	02 03 04 SI. No. 01 02	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx)	IS 11255 Part 1-1985 (RA:2019)	25 326 24.1 2109 Results 48.7 BDL (DL: 3	326 23.6 2066 CPCB Norms 75 5.0)	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv
	02 03 04 SI. No. 01 02 03 04	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon		25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88	326 23.6 2066 CPCB Norms 75 3.0) 710 100	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³
	02 03 04 SI. No. 01 02 03 04 05	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO	IS 11255 Part 1-1985 (RA:2019)	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114	326 23.6 2066 CPCB Norms 75 5.0) 710 100 150	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ mg/Nm³
	02 03 04 SI. No. 01 02 03 04 05 06	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO2	IS 11255 Part 1-1985 (RA:2019)	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8	326 23.6 2066 CPCB Norms 75 3.0) 710 100	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³
	02 03 04 SI. No. 01 02 03 04 05 06 07	TemperatureVelocityVolume of Gas DischargedTest ParametersParticulate MatterSulphur-di-oxide (SO2)Oxides of Nitrogen (NOX)Non-Methane HydrocarbonCarbon Monoxide as COCarbon dioxide as CO2Oxygen as O2	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114	326 23.6 2066 CPCB Norms 75 3.0) 710 100 150 	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ mg/Nm³
	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: 1	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO2	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 IK/07 End of Report	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9	326 23.6 2066 CPCB Norms 75 .0) 710 100 150 150	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: 1	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 IK/07 End of Report	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9	326 23.6 2066 CPCB Norms 75 .0) 710 100 150 150	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: 1	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 IK/07 End of Report	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9	326 23.6 2066 CPCB Norms 75 .0) 710 100 150 150	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: 1	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 IK/07 End of Report	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9	326 23.6 2066 CPCB Norms 75 .0) 710 100 150 150	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: 1	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 IK/07 End of Report	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9 hennai Metter Reviewe	326 23.6 2066 CPCB Norms 75 3.0) 710 100 150 ex Lab Prival 	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: 1	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 IK/07 End of Report	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9 hennai Mette Reviewe	326 23.6 2066 CPCB Norms 75 5.0) 710 100 150 ex Lab Prival ed & Authorized P. KAVITHA	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv/ mg/Nm³ %
	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: 1	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 IK/07 End of Report	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9 hennai Metter Reviewe	326 23.6 2066 CPCB Norms 75 5.0) 710 100 150 ex Lab Prival ed & Authorized P. KAVITHA ichnical Manage	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ %
	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: 1	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 IK/07 End of Report	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9 hennai Metter Reviewe	326 23.6 2066 CPCB Norms 75 5.0) 710 100 150 ex Lab Prival ed & Authorized P. KAVITHA	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ %
	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: 1	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 IK/07 End of Report	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9 hennai Metter Reviewe	326 23.6 2066 CPCB Norms 75 5.0) 710 100 150 ex Lab Prival ed & Authorized P. KAVITHA ichnical Manage	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ %
	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: I	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 IK/07 For Cl	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9 hennai Mette Reviewe	326 23.6 2066 CPCB Norms 75 3.0) 710 100 150 ex Lab Privat ed & Authorized P. KAVITHA wchnical Managet thorised Signato	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ mg/Nm³ %
NO	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: I	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 For Cl	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9 hennai Mette Reviewe Ta Aut	326 23.6 2066 CPCB Norms 75 3.0) 710 100 150 ex Lab Prival ed & Authorized P. KAVITHA schnical Managethorised Signato	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ %
NO oth test Exc	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: I Note: I	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Find of Report For Cl	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9 hennai Mette Reviewe Te Aut	326 23.6 2066 CPCB Norms 75 3.0) 710 100 150 ex Lab Prival ed & Authorized P. KAVITHA ichnical Manage thorised Signato	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv/ mg/Nm³ %
oth est en Exc he	02 03 04 SI. No. 01 02 03 04 05 06 07 Note: I Note: I	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Find of Report For Cl	25 326 24.1 2109 Results 48.7 BDL (DL: 3 339 88 114 7.8 10.9 hennai Mette Reviewe Reviewe Te Aut	326 23.6 2066 CPCB Norms 75 3.0) 710 100 150 ex Lab Prival ed & Authorized P. KAVITHA ichnical Manage thorised Signato	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ %

	CML	CML	• CML •	CML . CML . CI	ML . CML . CML . CM	L® CML® CI	ML® CML® (ML® CML	O CML O C	
GM				xlab.com xlab.com		Phone : 04	4-22323163, 2 42179490, 4		अग्राशोधन प्रमान	
e CML e		Met	tex	CHENNAI	METTEX LAB		e limit	ED®	A REAL PROPERTY AND A REAL)
UME		1		Jothi Complex	k, 83, M.K.N. Road, C	juindy, Chei	nnai - 600 03	32.	TC-5589	
• CML •				8	TEST REPOR	т	Pag	e (No.7 of 1		
Ë	10	<u></u>				-				
CMLO	18:	SUE	F	M/s. Solara Active Periyakalapet, Puducherry – 605	Pharma Sciences Ltd, 014.		C Date :21. C No :CM	04.2023 L/23-24/530		
0	Pa	arty's	Ref :	SRF Date: 16.04.	2023	D	ate of Receip	t: 16.04.202	:3	
		b No		24004236		т	est Complete	d on: 21.04.	2023	
IT & CMT & CMI	(as Da	stated ate of	l by custon f Sampli				s cedure: CML/S	STACK/SOP/	/08	
11.17	St.	No.		S	tack Details		Chimney-1	Chimney- 2	Unit	
11		01	Stack Di	iameter			25	25	cm	
A DE LA DE L		02	Tempera				338	338	°C	
	(03	Velocity				24.8	24.3	m/sec	
	0	04	Volume	of Gas Discharged			2130	2088	Nm ³ /hr	
	SI.	No.	Te	st Parameters	Test Meth	od	Results	CPCB Norms	Unit	
- 10 - In-	0	01	Particula	ate Matter	IS 11255 Part 1-198	85 (RA:2019)	46.2	75	mg/Nm ³	
	0	02	Sulphur-	di-oxide (SO ₂)			BDL (DL: 3.0)		ppmv	
ALC: NO.	0	3	Oxides o	of Nitrogen (NOx)			358	710	ppmv	
	C)4	Non-Me	thane Hydrocarbon		SOP/05	84	100	mg/Nm ³	
	C	05	Carbon I	Monoxide as CO	Child Hold		116	150	mg/Nm ³⁺	
	C)6	Carbon o	dioxide as CO2			8	44	%	
and the second se)7	Oxygen	as O ₂ LID.No: CML/ENV/			10.7		%	
				2	Ind of Report	For C	P. Teci Auth	Authorized & Authorized KAVITHA hnical Manage orised Signato	d By r	
	therwise sta esting ., exc emnant sam xcept in full he agreemer	ated the ept in c ples wi l, witho nt betw	e submitted r case of regula ill be discarde ut prior writt een Chennai	esults in this test report r atory samples, which will ed consequent upon com ten approval of the laborat i Mettex Lab and its Custo	In of the content or appearance of efer only to the sample(s) tested a be retained for a specific period as pletion of testing. Samples are no ory. This report is for the exclusive mer.	nd such sample(s) a s per statutory requ ot drawn by us unle we use of Chennai N	are retained for 15 d irement: while peris ss otherwise stated. Aettex Lab's customi	lays only from the shable & environm This document ca er, and is provide	e completion date nental testing rela annot be reprodu d in accordance v	e of ated iced with

*

.

GML/LAB/F/5.10/1

	ALTE ALTE ALTE ALTE	● CML ● CML ● CML ● CML ● C	LIL CLIF	CLIF & CLIF	- CLIF - CLI
	t@mettexlab.com	Phone : 044-22323163, 2			
	w.mettexlab.com	42179490, 4		alarite sufficiency	
ASSAUD			· · · ·	040	ARG DE
Vatio	3 Chennal Mett	ex lab private lim	IITED	00	这下的物
VIC				WITH Y	
	Jothi Complex, 83, M.H	K.N. Road, Guindy, Chennai - 60	0 032.	TC-5589	
~					
	8	TEST REPORT	đ	age No. I of I	
icelic	D. TO Min. Coloro Asthus P		.C Date :29		
1550E	D TO : M/s. Solara Active P Periyakalapet,	narma Sciences Ltd,	.C Date .28	9.00.2023	
	Puducherry – 605 01	4 T	C No :C	ML/23-24/24	952
		. ,			
Party's	Ref : SRF Date : 22.06.20	23	Date of Rece	ipt: 22.06.20	23
Lab No	: 24025964		Test Complet	ted on:29.06.	.2023
Samol	a Description: Stack Emiss	tion – D.G- 1500 KVA Cummin			
(as state	d by customer)				
Data o	f Sampling: 22.06.2023	Sampling Plan & Pr	ocedure: CM		208
Date o	i damping. 22.00.2020		ocedute, own		,00
Discipli	ine / Group: Chemical / Atmos	pheric Pollution			
SI. No.	Stac	k Details	Chimney-1	Chimney-2	Unit
01	Stack Diameter		25	25	cm
				262	°C
02	Temperature		352	352	~
03	Velocity		24.1	23.6	m/sec
				23.6 1979	
03	Velocity Volume of Gas Discharged Test Parameters	Test Method	24.1 2023 Results	23.6 1979 CPCB Norms	m/sec Nm ³ /hr Unit
03 04	Velocity Volume of Gas Discharged	Test Method IS 11255 Part 1-1985 (RA:2019)	24.1 2023 Results	23.6 1979 CPCB	m/sec Nm³/hr
03 04 SI. No.	Velocity Volume of Gas Discharged Test Parameters		24.1 2023 Results	23.6 1979 CPCB Norms 75	m/sec Nm ³ /hr Unit
03 04 SI. No. 01	Velocity Volume of Gas Discharged Test Parameters Particulate Matter		24.1 2023 Results 52.1	23.6 1979 CPCB Norms 75	m/sec Nm ³ /hr Unit mg/Nm ³
03 04 SI. No. 01 02	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂)	IS 11255 Part 1-1985 (RA:2019)	24.1 2023 Results 52.1 BDL (DL: 3.0)	23.6 1979 CPCB Norms 75	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv
03 04 SI. No. 01 02 03 04	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon		24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91	23.6 1979 CPCB Norms 75 710 100	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³
03 04 SI. No. 01 02 03 04 05	Velocity Volume of Gas Discharged Test Parameters Particulate Matter: Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO	IS 11255 Part 1-1985 (RA:2019)	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117	23.6 1979 CPCB Norms 75 710 100 150	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³
03 04 SI. No. 01 02 03 04 05 06	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂	IS 11255 Part 1-1985 (RA:2019)	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1	23.6 1979 CPCB Norms 75 710 100 150 	m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ mg/Nm³
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117	23.6 1979 CPCB Norms 75 710 100 150	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1	23.6 1979 CPCB Norms 75 710 100 150 	m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ mg/Nm³
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1	23.6 1979 CPCB Norms 75 710 100 150 	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % %
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1 10.8	23.6 1979 CPCB Norms 75 710 100 150 	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % %
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1 10.8 Chennai Mett	23.6 1979 CPCB Norms 75 710 100 150 ex Lab Privat	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1 10.8 Chennai Mett ~. 2 Reviews	23.6 1979 CPCB Norms 75 710 100 150 ex Lab Privat	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1 10.8 Chennai Mett	23.6 1979 CPCB Norms 75 710 100 150 ex Lab Privat ed & Authorize SELVAKUMA Senlor Chemist	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1 10.8 Chennai Mett	23.6 1979 CPCB Norms 75 710 100 150 ex Lab Privation ex Lab Privation ELVAKUMA	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1 10.8 Chennai Mett	23.6 1979 CPCB Norms 75 710 100 150 ex Lab Privat ed & Authorize SELVAKUMA Senlor Chemist	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1 10.8 Chennai Mett	23.6 1979 CPCB Norms 75 710 100 150 ex Lab Privat ed & Authorize SELVAKUMA Senlor Chemist	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
03 04 SI. No. 01 02 03 04 05 06 07	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1 10.8 Chennai Mett	23.6 1979 CPCB Norms 75 710 100 150 ex Lab Privat ed & Authorize SELVAKUMA Senlor Chemist	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
03 04 SI. No. 01 02 03 04 05 06 07 Note: 1	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ nstrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1 10.8 Chennai Mett ~. 2 Reviews V. 5	23.6 1979 CPCB Norms 75 710 100 150 ex Lab Privation ex Lab Privation ex Lab Privation ELVAKUMA Senior Chemist thorised Signato	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
03 04 SI. No. 01 02 03 04 05 06 07 Note: I	Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID.No: CML/ENV/SM	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	24.1 2023 Results 52.1 BDL (DL: 3.0) 327 91 117 8.1 10.8 Chennai Mett ~. 2 Reviews V. S Automic States of States	23.6 1979 CPCB Norms 75 710 100 150 ex Lab Privat ed & Authorize SELVAKUMA Senior Chemist thorised Signato	m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %

	LO CML	e (MFe (MFe (MFe (MFe	• CML • CML • CML • CML • CM	1Lº (ML º CI	AL & CWF &	CMLOC
-	1	t@mettexlab.com	Phone : 044-22323163, 22			and the second se
		w.mettexlab.com	42179490, 42	179491	विग्रायिम प्रकृति	ali Shi ma
	A Station		server all resources are server at the server	0	200	XIT'S AN
ALC: N	1 to	3 Chennai Metti	ex lab private lim	ITED 🕄	50	16日 1月
	Neur		ar who i that is all t		भारत	
1	Contraction of the second	Jothi Complex, 83, M.K	.N. Road, Guindy, Chennai - 600	032.	TC-5589	ELA-DESK NO.
		4				
					-	
		33	TEST REPORT	Page	No.1 of 1	
				<u> </u>		
	ISSUE	D TO ; M/s. Solara Active Pl	harma Sciences Ltd, T.C	C Date :29.0	6.2023	
		Periyakalapet,				
		Puducherry – 605.014	4. T.(C No :CML	/23-24/249	51
						•
	Party's	Ref : SRF Date: 22.06.202	23 D	ate of Receipt	22.00.202	3
	Lab No	: 24025963	т	est Completed	l on:29.06.2	2023
			de an			
	Sample	e Description: Stack Emissi	ion – D.G- 1010 KVA Cummins	5		
	(as stated	i by customer)				
	Date of	f Sampling: 22.06.2023	Sampling Plan & Pro	cedure: CML/S	TACK/SOP/	08
	Discipli	ne / Group: Chemical / Atmosp	beric Pollution			
					01.1	
	SI. No.		k Details	Chimney-1	Chimney-2	
	01	Stack Diameter		25	25	cm ∘C
	02	Temperature		337	337	
	1 00	3.8.6 0		04.7	04.4	
	03	Velocity		21.7	21.4	m/sec
	03	Velocity Volume of Gas Discharged	П	21.7 1866	1834	m/sec Nm³/hr
		the second se	Test Method			
	04	Volume of Gas Discharged		1866	1834 CPCB	Nm³/hr Unit
	04 SI. No . 01	Volume of Gas Discharged Test Parameters Particulate Matter	Test Method (S 11255 Part 1-1985 (RA:2019)	1866 Results 48.7	1834 CPCB Norms 75	Nm ³ /hr Unit mg/Nm ³
	04 SI. No. 01 02	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂)		1866 Results 48.7 BDL (DL: 3.0)	1834 CPCB Norms 75	Nm ³ /hr Unit mg/Nm ³ ppmv
	04 SI. No . 01	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx)		1866 Results 48.7 BDL (DL: 3.0) 344	1834 CPCB Norms 75	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv
	04 SI. No. 01 02	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂)	IS 11255 Part 1-1985 (RA:2019)	1866 Results 48.7 BDL (DL: 3.0)	1834 CPCB Norms 75	Nm ³ /hr Unit mg/Nm ³ ppmv
	04 SI. No. 01 02 03	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx)		1866 Results 48.7 BDL (DL: 3.0) 344	1834 CPCB Norms 75 	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv
	04 SI. No. 01 02 03 04 05	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO	IS 11255 Part 1-1985 (RA:2019)	1866 Results 48.7 BDL (DL: 3.0) 344 79	1834 CPCB Norms 75 710 100	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³
	04 SI. No. 01 02 03 03 04	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂	IS 11255 Part 1-1985 (RA:2019)	1866 Results 48.7 BDL (DL: 3.0) 344 79 114	1834 CPCB Norms 75 710 100 150	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3	1834 CPCB Norms 75 710 100 150 	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2	1834 CPCB Norms 75 710 100 150 	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3	1834 CPCB Norms 75 710 100 150 	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2	1834 CPCB Norms 75 710 100 150 	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2 hennai Mettex √. 2.0	1834 CPCB Norms 75 710 100 150 Lab Privato	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % %
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2 hennai Mettex <i>~ 2.0</i> Reviewed	1834 CPCB Norms 75 710 100 150 Lab Private & Authorized	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % % %
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2 hennai Mettex ~ 2.0 Reviewed V. SE	1834 CPCB Norms 75 710 100 150 Lab Privato	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % % %
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2 hennai Mettex ~ 2.0 Reviewed V. SE Se	1834 CPCB Norms 75 710 100 150 Lab Privato & Authorized LAKUMA	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % % % e Limited, By R
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2 hennai Mettex ~ 2.0 Reviewed V. SE Se	1834 CPCB Norms 75 710 100 150 Lab Private & Authorized CLAKUMA nior Chemist	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % % % e Limited, By R
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2 hennai Mettex ~ 2.0 Reviewed V. SE Se	1834 CPCB Norms 75 710 100 150 Lab Private & Authorized CLAKUMA nior Chemist	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % % % e Limited, By R
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2 hennai Mettex ~ 2.0 Reviewed V. SE Se	1834 CPCB Norms 75 710 100 150 Lab Private & Authorized CLAKUMA nior Chemist	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % % % e Limited, By R
	04 SI. No. 01 02 03 04 05 06 07	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2 hennai Mettex ~ 2.0 Reviewed V. SE Se	1834 CPCB Norms 75 710 100 150 Lab Private & Authorized CLAKUMA nior Chemist	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % % % e Limited, By R
ione	04 SI. No. 01 02 03 04 05 06 07 Note: II	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID.No: CML/ENV/SMI	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Tind of Report For Cl	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2 hennai Mettex ~ 2.0 Reviewed V. SE Se Author	1834 CPCB Norms 75 710 100 150 Lab Private & Authorized Lab Private & Authorized Lab Private Signator	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % % e Limited, By R ny
sting	04 SJ. No. 01 02 03 04 05 06 07 Note: II	Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID.No: CML/ENV/SMI	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Ind of Report For Cl	1866 Results 48.7 BDL (DL: 3.0) 344 79 114 7.3 11.2 hennai Mettex V. 2.0 Reviewed V. SE Se Author	1834 CPCB Norms 75 710 100 150 Lab Private & Authorized CLVAKUMA nior Chemist orised Signator	Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % % e Limited, %

6	u-tto	w.mettexlab.com	42179490, 4 EX LAB PRIVATE LIM	0 (s	88	
134	Melle		ومحمولات والمربعة والمتحصيلة والمربعة ومعاولة والمراجعة والمراجع	No. of Concession, Name	- urrei	
_		Jothi Complex, 83, M.F	K.N. Road, Guindy, Chennai - 60	0 032.	TC-5589	
	2					
		E.				
			TEST REPORT	Par	e No. T of T	
	ISSUE	D TO : M/s. Solara Active P Periyakalapet,	harma Sciences Ltd, T	.C Date :29	.06.2023	
		Puducherry – 605 01	4. T	.C. No :CM	AL/23-24/249	950
		4. 				
	Party's	Ref : SRF Date: 22.06.20	23 👘 [Date of Receip	ot: 22.06,20 2	23
	Lab No	:24025962	л. Т	est Complete	d on:29.06.2	2023
	200 110	LIVEOUL		dot oompioto		
		e Description: Stack Emiss	ion – D.G- 1500 KVA Caterpill	ar		
	Date of	Sampling: 22.06.2023	Sampling Plan & Pr	rocedure: CML	JSTACK/SOF	2/08
	Discipli	ne / Group: Chemical / Atmosp	pheric Pollution		.*	
	SI. No.	Stat	k Details	Chimney-1	Chimney-	2 Unit
	01	Stack Diameter		25	25	cm
	01 02	Temperature		372	372	°C
	01 02 03	Temperature Velocity		372 24.2	372 23.6	°C m/sec
	01 02	Temperature		372	372 23.6 1920	°C
	01 02 03	Temperature Velocity	Test Method	372 24.2	372 23.6	°C m/sec
	01 02 03 04	Temperature Velocity Volume of Gas Discharged	Test Method IS 11255 Part 1-1985 (RA:2019)	372 24.2 1963 Results	372 23.6 1920 CPCB	°C m/sec Nm ³ /hr
	01 02 03 04 SI. No.	Temperature Velocity Volume of Gas Discharged Test Parameters		372 24.2 1963 Results	372 23.6 1920 CPCB Norms 75	°C m/sec Nm³/hr Unit
	01 02 03 04 Si. No. 01	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter		372 24.2 1963 Results 59.4	372 23.6 1920 CPCB Norms 75	°C m/sec Nm ³ /hr Unit mg/Nm ³
	01 02 03 04 SI. No. 01 02	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx)	IS 11255 Part 1-1985 (RA:2019)	372 24.2 1963 Results 59.4 BOL (DL: 3.0	372 23.6 1920 CPCB Norms 75 0)	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv
	01 02 03 04 Si. No. 01 01 02 03 03 04	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon		372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88	372 23.6 1920 CPCB Norms 75 0) 710 100	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³
	01 02 03 04 Si. No. 01 02 03 03 04 05	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO	IS 11255 Part 1-1985 (RA:2019)	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114	372 23.6 1920 CPCB Norms 75 0) 710 100 150	°C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ mg/Nm³
	01 02 03 04 SI. No. 01 02 03 03 04 05 06	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂	IS 11255 Part 1-1985 (RA:2019)	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114 9.1	372 23.6 1920 CPCB Norms 75)) 710 100 150 	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³
	01 02 03 04 Si. No. 01 02 03 03 04 05 06 07	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114	372 23.6 1920 CPCB Norms 75 0) 710 100 150	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³
	01 02 03 04 Si. No. 01 02 03 03 04 05 06 07	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114 9.1	372 23.6 1920 CPCB Norms 75)) 710 100 150 	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³
	01 02 03 04 Si. No. 01 02 03 03 04 05 06 07	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114 9.1	372 23.6 1920 CPCB Norms 75 0) 710 100 150 	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	01 02 03 04 Si. No. 01 02 03 03 04 05 06 07	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114 9.1 9.9	372 23.6 1920 CPCB Norms 75 0) 710 100 150 	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	01 02 03 04 Si. No. 01 02 03 03 04 05 06 07	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07	372 24.2 1963 Results 59.4 BOL (DL: 3.0 312 88 114 9.1 9.9	372 23.6 1920 CPCB Norms 75 0) 710 100 150 	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
	01 02 03 04 Si. No. 01 02 03 03 04 05 06 07	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114 9.1 9.9 Chennai Metter Reviewe V. SE	372 23.6 1920 CPCB Norms 75 0) 710 100 150 ex Lab Prival d & Authorized	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
	01 02 03 04 Si. No. 01 02 03 03 04 05 06 07	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114 9.1 9.9 Chennai Metter Reviewe V. SE	372 23.6 1920 CPCB Norms 75 0) 710 100 150 ex Lab Prival d & Authorized LVAKUMAF nior Chemist	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
	01 02 03 04 Si. No. 01 02 03 03 04 05 06 07	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114 9.1 9.9 Chennai Metter Reviewe V. SE	372 23.6 1920 CPCB Norms 75 0) 710 100 150 ex Lab Prival d & Authorized	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
	01 02 03 04 Si. No. 01 02 03 03 04 05 06 07	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114 9.1 9.9 Chennai Metter Reviewe V. SE	372 23.6 1920 CPCB Norms 75 0) 710 100 150 ex Lab Prival d & Authorized LVAKUMAF nior Chemist	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %
	01 02 03 04 Si. No. 01 02 03 03 04 05 06 07	Temperature Velocity Volume of Gas Discharged Test Parameters Particulate Matter Sulphur-di-oxide (SO ₂) Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂	IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07	372 24.2 1963 Results 59.4 BDL (DL: 3.0 312 88 114 9.1 9.9 Chennai Metter Reviewe V. SE	372 23.6 1920 CPCB Norms 75 0) 710 100 150 ex Lab Prival d & Authorized LVAKUMAF nior Chemist	°C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ % %

CML . CML	● CML ● CML ● CML ● CML	. CML . CML . CML . CML . C	MLO CML	CML . CML	• CML • C
	it@mettexlab.com w.mettexlab.com	Phone : 044-22323163, 2		(Aler)	
web : ww		42179490, 4 EX LAB PRIVATE LIM	0		
Merre		EV PUP LINAULE PU		- HILL	
	Jothi Complex, 83, M.F	K.N. Road, Guindy, Chennai - 60	0 032,	TC-5589	
		TEST REPORT	· / e	Page No. 1 of 1	
ISSUE	D TO : M/s. Solara Active P	harma Sciences Ltd, T	.C Date :2	9.06.2023	
	Periyakalapet, Puducherry – 605 01	4 T	C No :C	ML/23-24/24	1040
	r duacheny = 000 01	···	.0 110 .0	/10(2/20-24/2-	1040
Party's	Ref : SRF Date: 22.06.20	23 [Date of Rece	eipt: 22.06.20)23
Lab No	o : 24025961	т	est Complet	ted on:29.06	.2023
Date o	d by customer) If Sampling: 21.06.2023 Ing Plan & Procedure: CML/ST	ACK/SOP/08 Discipline / Grou	ip: Chemical	/ Atmospheric	Pollution
SI. No.		Stack Details			Unit
01	Slack Diameter			25	cm
02	Temperature			45	°C
03	Velocity Volume of Gas Discharged			5.6	m/sec Nm ³ /hr
				СРСВ	
SI. No.	Test Parameters	Test Method	Results	Norms	Unit
01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	54.6	75	mg/Nm ³
02	Sulphur-di-oxide (SO ₂)		BDL (DL: 3.0		
		-			
		CML/STACK/SOP/05			+
		_			
07		-	10.9		%
Note:	Instrument ID.No: CML/ENV/SM	K/07			
		End of Report	Chennai Met	tex Lab Priva	ate Limited
			~.5 Review V	Ved & Authorizi SELVAKUN Senior Chemia	ed By MAR
	Oxides of Nitrogen (NOx) Non-Methane Hydrocarbon Carbon Monoxíde as CO Carbon dioxíde as CO ₂ Oxygen as O ₂ Instrument ID.No: CML/ENV/SM	K/07 End of Report	Chennai Met ~. 5 Review V	tex Lab Prive	ate Limite Local ed By MAR

Interview of the colle
Web * unuv.mettexlab.com Yeb * unuv.mettexlab.com Yeb * CHENNAI METTEX LAB PRIVATE LIMITED Jothi Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. *
Note: Since the initial of the parameter of t
Jothi Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Te-3559 Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Teresteen Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032. Periyakalapet, Puducherry - 605 014. T.C Date : 29.06.2023 Date of Receipt: 22.06.2023 Sample Description: Stack Emission - Boiler - 16 Ton (Load - 13,000 kg/h) (as stated by customer) Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical
TEST REPORT ISSUED TO: M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, Puducherry – 605 014. T.C Date :29.06.2023 Party's Ref SRF Date: 22.06.2023 Date of Receipt: 22.06.2023 Date of Receipt: 22.06.2023 Lab No : 24025960 Test Completed on: 29.06.2023 Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution SI. No. Stack Details 01 Diameter 1.5 m² 02 Temperature 03 Velocity 04 Volume of Gas Discharged 03 Velocity 04 Volume of Gas Discharged 05 No. Test Parameters Test Method 01 Particulate Matter 02 Sulphur-di-oxide (SO ₂)
ISSUED TO : M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, T.C Date :29.06.2023 Puducherry - 605 014. T.C No :CML/23-24/24948 Party's Ref : SRF Date: 22.06.2023 Date of Receipt: 22.06.2023 Lab No : 24025960 Test Completed on:29.06.2023 Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Sampling: 21.06.2023 Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution 1.5 m² 02 Temperature 1.5 m² 02 Temperature 125 °C 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
ISSUED TO : M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, Puducherry – 605 014. T.C Date :29.06.2023 Party's Ref : SRF Date: 22.06.2023 Date of Receipt: 22.06.2023 Lab No : 24025960 Test Completed on:29.06.2023 Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Sampling: 21.06.2023 Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution 1.5 m² 02 Temperature 1.5 m² 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr SI. No. Test Parameters Test Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
ISSUED TO : M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, T.C Date :29.06.2023 Puducherry - 605 014. T.C No :CML/23-24/24948 Party's Ref : SRF Date: 22.06.2023 Date of Receipt: 22.06.2023 Lab No : 24025960 Test Completed on:29.06.2023 Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Sampling: 21.06.2023 Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution 1.5 m² 02 Temperature 1.5 m² 02 Temperature 125 °C 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
ISSUED TO : M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, Puducherry – 605 014. T.C Date :29.06.2023 Party's Ref : SRF Date: 22.06.2023 Date of Receipt: 22.06.2023 Lab No : 24025960 Test Completed on:29.06.2023 Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Test Completed on:29.06.2023 Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution 1.5 m² 02 Temperature 1.5 m² 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr SI. No. Test Parameters Test Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
ISSUED TO : M/s. Solara Active Pharma Sciences Ltd, Periyakalapet, T.C Date :29.06.2023 Puducherry - 605 014. T.C No :CML/23-24/24948 Party's Ref : SRF Date: 22.06.2023 Date of Receipt: 22.06.2023 Lab No : 24025960 Test Completed on:29.06.2023 Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Sampling: 21.06.2023 Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution 1.5 m² 02 Temperature 1.5 m² 02 Temperature 125 °C 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
Periyakalapet,Puducherry – 605 014.T.C. No:CML/23-24/24948Party's Ref: SRF Date: 22.06.2023Date of Receipt: 22.06.2023Lab No: 24025960Test Completed on:29.06.2023Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer)Sampling: 21.06.2023Date of Sampling: 21.06.2023Sampling Plan & Procedure: CML/STACK/SOP/08Discipline: Chemical ; Group : Atmospheric PollutionUnit01Diameter1.502Temperature12503Velocity8.304Volume of Gas Discharged3916604Volume of Gas Discharged3916601Particulate MatterIS 11255 Part 1-1985 (RA:2019)147.602Sulphur-di-oxide (SO2)BDL (DL: 3.0)mg/Nm³
Periyakalapet,Puducherry – 605 014.T.C. No:CML/23-24/24948Party's Ref: SRF Date: 22.06.2023Date of Receipt: 22.06.2023Lab No: 24025960Test Completed on:29.06.2023Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer)Sampling: 21.06.2023Date of Sampling: 21.06.2023Sampling Plan & Procedure: CML/STACK/SOP/08Discipline: Chemical ; Group : Atmospheric PollutionUnit01Diameter1.502Temperature12503Velocity8.304Volume of Gas Discharged3916604Volume of Gas Discharged3916601Particulate MatterIS 11255 Part 1-1985 (RA:2019)147.602Sulphur-di-oxide (SO2)BDL (DL: 3.0)mg/Nm³
Party's Ref : SRF Date: 22.06.2023 Date of Receipt: 22.06.2023 Lab No : 24025960 Test Completed on:29.06.2023 Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution Stack Details Unit 01 Diameter 1.5 m² 02 Temperature 125 °C 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr SI. No. Test Parameters Test Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
Lab No : 24025960 Test Completed on:29.06.2023 Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution Stack Details Unit 01 Diameter 1.5 m² 02 Temperature 125 °C 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr SI. No. Test Parameters Test Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
Lab No : 24025960 Test Completed on:29.06.2023 Sample Description: Stack Emission- Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution Stack Details Unit 01 Diameter 1.5 m² 02 Temperature 125 °C 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr SI. No. Test Parameters Test Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
Sample Description: Stack Emission– Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution Stack Details Unit 01 Discipline: Chemical ; Group : Atmospheric Pollution Stack Details Unit 01 Diameter 1.5 m² 02 Temperature 125 qC 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr Stack Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
Sample Description: Stack Emission– Boiler- 16 Ton (Load- 13,000 kg/h) (as stated by customer) Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution Stack Details Unit 01 Discipline: Chemical ; Group : Atmospheric Pollution Stack Details Unit 01 Diameter 1.5 m² 02 Temperature 125 qC 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr Stack Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
(as stated by customer) Date of Sampling: 21.06.2023 Sampling Plan & Procedure: CML/STACK/SOP/08 Discipline: Chemical ; Group : Atmospheric Pollution Sl. No. Stack Details Unit 01 Diameter 1.5 m² 02 Temperature 125 °C 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr SI. No. Test Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
Date of Sampling: 21.06.2023Sampling Plan & Procedure: CML/STACK/SOP/08Discipline: Chemical ; Group : Atmospheric PollutionSl. No.Stack DetailsUnit01Diameter1.5m²02Temperature125°C03Velocity8.3m/sec04Volume of Gas Discharged39166Nm³/hrSl. No.Test ParametersTest MethodResultsUnit01Particulate MatterIS 11255 Part 1-1985 (RA:2019)147.6mg/Nm³02Sulphur-di-oxide (SO2)BDL (DL: 3.0)mg/Nm³
Discipline: Chemical ; Group : Atmospheric Pollution SI. No. Stack Details Unit 01 Diameter 1.5 m² 02 Temperature 125 °C 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr SI. No. Test Parameters Test Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
SI. No.Stack DetailsUnit01Diameter1.5m²02Temperature125°C03Velocity8.3m/sec04Volume of Gas Discharged39166Nm³/hrSI. No.Test ParametersTest MethodResultsUnit01Particulate MatterIS 11255 Part 1-1985 (RA:2019)147.6mg/Nm³02Sulphur-di-oxide (SO2)BDL (DL: 3.0)mg/Nm³
SI. No.Stack DetailsUnit01Diameter1.5m²02Temperature125°C03Velocity8.3m/sec04Volume of Gas Discharged39166Nm³/hrSI. No.Test ParametersTest MethodResultsUnit01Particulate MatterIS 11255 Part 1-1985 (RA:2019)147.6mg/Nm³02Sulphur-di-oxide (SO2)BDL (DL: 3.0)mg/Nm³
01 Diameter 1.5 m² 02 Temperature 125 °C 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr SI. No. Test Parameters Test Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
02 Temperature 125 °C 03 Velocity 8.3 m/sec 04 Volume of Gas Discharged 39166 Nm³/hr SI. No. Test Parameters Test Method Results Unit 01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
04Volume of Gas Discharged39166Nm³/hrSI. No.Test ParametersTest MethodResultsUnit01Particulate MatterIS 11255 Part 1-1985 (RA:2019)147.6mg/Nm³02Sulphur-di-oxide (SO2)BDL (DL: 3.0)mg/Nm³
Sl. No.Test ParametersTest MethodResultsUnit01Particulate MatterIS 11255 Part 1-1985 (RA:2019)147.6mg/Nm³02Sulphur-di-oxide (SO2)BDL (DL: 3.0)mg/Nm³
01 Particulate Matter IS 11255 Part 1-1985 (RA:2019) 147.6 mg/Nm³ 02 Sulphur-di-oxide (SO2) BDL (DL: 3.0) mg/Nm³
02 Sulphur-di-oxide (SO ₂) BDL (DL: 3.0) mg/Nm ³
U3 UXIdes of Nitrogen (NUX) I I 239 I mn/Nm ³ I
06 Oxygen as O2 13.5 % Note: Instrument ID.No; CML/ENV/SMK/07 13.5 %
As per MoEFCC Notification Environment (Protection) Amendment Rules 2013 Standards are
Particulate Matter Movimum Limite
Steam generation capacity (ton/hour) Limits Agro Based Parameters Agro Based Fuels
less than 2 Ton 500 mg/Nm ³ SO ₂
2 to less than 10 Ton 250 mg/Nm ³ NOx
10 Ton and above 250 mg/Nm ³
For Chennai Mettex Lab Private Limited.
I I v. uli bonn
Reviewed & Authorized By
V. SELVAKUMAR Senior Chemist
Authorised Signatory
CTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal activity of the submitted end of the second secon
OTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal act herwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the comple sting , except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental te minant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be

£

		ML • CML • CML • CML •		one : 044-				IL .
		ettexlab.com	114		4217949	0, 4217	9491 @	and an and a
6	Mettex	CHENNAI M	ettex lab pr	IVAT	e lim	ITED		SC
Y		Jothi Complex, 8	3, M.K.N. Road, Guind	ly, Chem	nai - 600	0 032.	T	C-5589
		< *						
			TEST REPORT				Page No. 1 o	FT
	ISSUED	TO : M/s. Solara Active P Periyakalapet,	harma Sciences Ltd,	Τ.0	C Date	:25.05.:	2023	
		Puducherry - 605 01	4.	Ť.(C No	:CML/2	3-24/14947	7
	Party's Re	ef : SRF date: 16.05.202	23	D	ate of Re	eceipt: 1	6.05.2023	
	Lab No	: 24014068		Te	est Comp	pleted or	n:23.05.202	23
	(as stated by Date of S)escription: Stack Emiss roustomer) ampling: 15.05.2023 Chemical ; Group : Atmosp	Sampling Plan	·	- /		/SOP/08	
	SI. No.		Stack Details				Unit	7
	01	Diameter			1.	5	m ²	-
	02	Temperature			11	9	°C	
	03	Velocity			7.	в	m/sec	
	04	Volume of Gas Discharged			372	96	Nm³/hr	
	SI. No.	Test Parameters	Test Method		Rest		Unit	-
	01	Particulate Matter	IS 11255 Part 1-1985 (R	A:2019)	125		mg/Nm ³	_
	02	Sulphur-di-oxide (SO ₂)			BDL (D		mg/Nm ³	-
	03	Oxides of Nitrogen (NOx)	CML/STACK/SOP	06	22		mg/Nm ³	_
	04	Carbon Monoxide as CO			12		mg/Nm ³	_
	05	Carbon dioxide as CO2	-		8.:		%	4
	06	Oxygen as O ₂	11/(0.7		12	.3	%	-
		strument ID.No: CML/ENV/SM EFCC Notification Environm		ent Rules 2	013 Stan	dards ar	e	
		neration capacity (ton/hour)	Particulate Matter Limits Agro Based Fuels	Param		Maxir	mum Limits Based Fuels	
	less than 2	Ton	500 mg/Nm ³	SC	D ₂			
	2 to less th	an 10 Ton	250 mg/Nm ³	NC)x		16.00	
	10 Ton and		250 mg/Nm ³					
		Enc	For Cl	Ses	24	ed By MAR st	Limited,	
		¥6			s sent all'Hi	INVIJ		

and y	the second se	● CML ● CML ● CML ● CML ● CM	L . CML . CM	IL • CML	• CML • C
	@mettexlab.com w.mettexlab.com	Phone: 044	-22323163, 22 42179490, 42		and
Mett	CHENNAI M	ETTEX LAB PRIVAT	E LIMITE	D	ALL
C	Jothi Complex, 8	33, M.K.N. Road, Guindy, Chen	nai - 600 032	2.	TC-5589
ISSUE	D TO : M/s. Solara Active F Periyakalapet,	TEST REPORT Pharma Sciences Ltd, T.(<i>₫ფ</i> ≉ C Date :25.0	<i>№.1 of 1</i> 5.2023	
	Puducherry - 605 01	14. T.(C No :CML	/23-24/14	948
Party's	Ref : SRF date: 16.05.20	23 Da	te of Receipt:	16.05.202	:3
Lab No	: 24014069	Te	st Completed o	on:23.05.2	023
Date o	d by customer) f Sampling: 15.05.2023 ng Plan & Procedure: CML/ST			naanbaria	Dollutian
Si, No.		ACK/SOP/08 Discipline / Group Stack Details	: Chemical / Atr	nospnenc	Unit
01	Stack Diameter		25		cm
02	Temperature		336	}	°C
03	Velocity		33.4	4	m/sec
04	Volume of Gas Discharged		287	4	Nm³/hr
SI. No.	Test Parameters	Test Method	Results	CPCB Norms	Unit
01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	57.7	75	mg/Nm ³
02	Sulphur-di-oxide (SO ₂)		BDL (DL: 3.0)		ppmv
03	Oxides of Nitrogen (NOx)		389	710	ppmv
04	Non-Methane Hydrocarbon	CML/STACK/SOP/05	71	100	mg/Nm ³
05	Carbon Monoxide as CO	-	120	150	mg/Nm ³
06	Carbon dioxide as CO2		7.2		%
07	Oxygen as O ₂		11.3		%
Note: ir	nstrument ID.No: CML/ENV/SM	K/07 Ind of Report	in the residence of		
	¥		Reviewed 8		d By
	*ja 2		Senio	VAKUMA or Chemist sed Signator	- 1
nerwise stated the ting ., except in c	submitted results in this test report refer ase of regulatory samples, which will be re	the content or appearance of this document is unla only to the sample(s) tested and such sample(s) are stained for a specific period as per statutory require on of testing. Samples are not drawn by us unless	ratained for 15 days ment: while perishal otherwise stated. Th	only from the ble & environm is document ca	completion date a cental testing relate nnot be reproduce

-mai			L • CML • CML • CML • CML •	CML . CML	• CML • Cl	ML • CML •
		@mettexlab.com w.mettexlab.com	Phone : (044-22323163 42179490	3, 22311034), 42179491	
X	fett	CHENNAL I	METTEX LAB PRIVA	ite lim	ITED	HILL HILL
×,	2	Jothi Complex,	83, M.K.N. Road, Guindy, Ch	iennai – 600	032.	TC-5589
			-			
		.s.	TEST REPORT]	Page No. 1 of 1	3
ļ	SSUE	D TO : M/s. Solara Active Periyakalapet,	Pharma Sciences Ltd,	T.C Date :	25.05.2023	\$
		Puducherry - 605	014.	T.C No :	CML/23-24	/14949
P	Party's	Ref : SRF date: 16.05.2	023	Date of Rec	eipt: 16.05	.2023
L	ab No	: 24014070		Test Comple	eted on:23.	05.2023
D	iscipli	f Sampling: 15.05.2023 ine / Group: Chemical / Atmo	Sampling Plan &	Procedure: C	MUSTACK	SOP/08
_	l. No.		ck Details	Chimney-1	Chimney-2	2 Unit
_	01 02	Stack Diameter		25	25	cm
-	02	Temperature Velocity		368 23.6	368	°C m/sec
_	04	Volume of Gas Discharged		1926	1866	Nm ³ /hr
SI	l. No.	Test Parameters	Test Method	Results	CPCB Norms	Unit
-	01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	54.5	75	mg/Nm ³
	02	Sulphur-di-oxide (SO2)		BDL (DL: 3.0)	•••	ppmv
	03	Oxides of Nitrogen (NOx)		289	710	ppmv
	04	Non-Methane Hydrocarbon	CML/STACK/SOP/05	90	100	mg/Nm ³
	05	Carbon Monoxide as CO		102	150	mg/Nm ³
	~ 1					I marcone 1
-	06	Carbon dioxide as CO2		9.5		%
	06 07	Oxygen as O ₂				
	06 07	Oxygen as O ₂ nstrument ID.No: CML/ENV/S		9.5 9.6		%
	06 07	Oxygen as O ₂ nstrument ID.No: CML/ENV/S	Ind of Report	9.5 9.6		<u>%</u> %
	06 07	Oxygen as O ₂ nstrument ID.No: CML/ENV/S	Ind of Report	9.5 9.6		%
	06 07	Oxygen as O ₂ nstrument ID.No: CML/ENV/S	Ind of Report	9.5 9.6 Chennai Me	 ttex Lab Pr	% % ivate Limited,
	06 07	Oxygen as O ₂ nstrument ID.No: CML/ENV/S	Ind of Report	9.5 9.6 Chennai Me	 ttex Lab Pr	% % ivate Limited,
	06 07	Oxygen as O ₂ nstrument ID.No: CML/ENV/S	Ind of Report	9.5 9.6 Chennai Me V. 2 Review		ivate Limited, rized By MAR
	06 07	Oxygen as O ₂ nstrument ID.No: CML/ENV/S	Ind of Report	9.5 9.6 Chennai Me V. 2 Review	 ttex Lab Pr wed & Author SELVAKU	ivate Limited, rized By MAR
	06 07	Oxygen as O ₂ nstrument ID.No: CML/ENV/S	Ind of Report	9.5 9.6 Chennai Me V. 2 Review		ivate Limited, rized By MAR
	06 07	Oxygen as O ₂ nstrument ID.No: CML/ENV/S	Ind of Report	9.5 9.6 Chennai Me V. 2 Review		ivate Limited, rized By MAR
E. An	06 07 ote: Ir	Oxygen as Oz Istrument ID.No: CML/ENV/S	Ind of Report	9.5 9.6 Chennai Me	ttex Lab Pr wed & Author SELVAKU Senior Chem uthorised Sign	% % % ivate Limited, rized By MAR ist watory

×.

	Moth	CHENNAI I	METTEX LAB PRIVA	TE LIMI	IED	HILL .
		Jothi Complex,	83, M.K.N. Road, Guindy, Ch	ennai - 600	032.	TC-5589
			TEST REPORT		Page No. 1 of	
	ISSUE	D TO : M/s. Solara Active Periyakalapet, Puducherry – 605		T.C Date :2 T.C No :0	25.05.2023 CML/23-24	
	Party's	Ref : SRF date: 16.05.2	2023	Date of Rece	eipt: 16.05.	2023
	Lab No	: 24014071		Test Comple	ted on:23.	05.2023
	SI. No.		Stack Details		Chimney- 2	Unit
	01	Stack Diameter		25	25	cm
	02	Temperature	:	348	348	°C
	03	Velocity Volume of Gas Discharged		23.4	23.4 1971	m/sec Nm ³ /hr
	SI. No.	Test Parameters	Test Method	Results	CPCB Norms	Unit
2	01	Particulate Matter	IS 11255 Part 1-1985 (RA:2019)	46.6	75	mg/Nm ³
		Sulphur-di-oxide (SO2)		BDL (DL: 3.0)		ppmv
	02	Oxides of Nitrogen (NOx)		340	710	ppmv
	02			87	100	mg/Nm ³
		Non-Methane Hydrocarbon	OMURTACKICODIOE			mg/Nm ³
	03	Non-Methane Hydrocarbon Carbon Monoxide as CO	CML/STACK/SOP/05	115	150	Linder and D
	03 04		CML/STACK/SOP/05	115 7	150	%
	03 04 05	Carbon Monoxide as CO	CML/STACK/SOP/05			
	03 04 05 06 07	Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID.No: CML/ENV/S	- 	7 11.5	**	%
	03 04 05 06 07	Carbon Monoxide as CO Carbon dioxide as CO ₂ Oxygen as O ₂ Instrument ID.No: CML/ENV/S		7	**	%

×.

		dab.com	Phone : 04	4-22323163,	22311034	Contra
eb : wu			ettex lab privat	42179490,	42179491 ©	
Mél		Management of the local division of the loca	and some design of a second second second	1		HIR
		Jothi Complex, 8	3, M.K.N. Road, Guindy, Che	nnai - 600 0)32.	TC-5589
		a. J	¥1			
		×	TEST REPORT	ø	Page No.1 of 1	
ISSU	ED TO		Pharma Sciences Ltd,	T.C Date :2	5.05.2023	
		Periyakalapet, Puducherry – 605 01	14.	T.C No :C	ML/23-24/14	951
		,				
Party	s Ref	: SRF Date : 16.05.20	023 [Date of Rece	ipt: 16.05.202	23
Lab N	lo :	: 24014072	9	Test Complet	ted on:23.05.	2023
(as stat	ed by custo of Samp	ing: 15.05.2023			L/STACK/SOF	² /08
Discib	line / Gro	oup: Chemical / Atmos	pheric Pollution			
	-		pheric Pollution	Chitaney-1	Chimney-2	Unit
5!. No.				Chiraney-1	Chimney-2	Unit cm
\$!. No.		Stac Diameter				
\$!. No. 01	Stack [Stac Diameter rature		25	25	cm
SI. No. 01 02	Stack f	Stac Diameter rature		25 361	25 361	cm °C
S!. No. 01 02 03	Stack f Tempe Velocit Volume	Stac Diameter rature Y		25 361 25.1	25 361 24.5	cm °C m/sec
St. No. 01 02 03 04	Stack I Tempe Velocit Volume	Stac Diameter rature y e of Gas Discharged	k Detaíls	25 361 25.1 2078 Results	25 361 24.5 2022 CPCB	cm °C m/sec Nm³/hr
St. No. 01 02 03 04 St. No.	Stack I Tempe Velocit Volume	Stac Diameter rature y e of Gas Discharged Fest Parameters	k Detaíls Test Method	25 361 25.1 2078 Results	25 361 24.5 2022 CPCB Norms 75	cm °C m/sec Nm³/hr Unit
St. No. 01 02 03 04 St. No. 01	Stack I Tempe Velocit Volume Particu Sulphu	Stac Diameter rature y e of Gas Discharged Fest Parameters late Matter	k Detaíls Test Method	25 361 25.1 2078 Results 46.8	25 361 24.5 2022 CPCB Norms 75	cm °C m/sec Nm³/hr Unit mg/Nm³
St. No. 01 02 03 04 St. No. 01 02	Stack f Tempe Velocit Volume Particu Sulphu Oxides	Stac Diameter rature y e of Gas Discharged Fest Parameters late Matter r-di-oxide (SO ₂)	k Details Test Method IS 11255 Part 1-1985 (RA:2019)	25 361 25.1 2078 Results 46.8 BDL (DL: 3.0)	25 361 24.5 2022 CPCB Norms 75 	cm °C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv
St. No. 01 02 03 04 Si. No. 01 02 03	Stack I Tempe Velocit Volume Particu Sulphu Oxides Non-Me	Stac Diameter rrature y e of Gas Discharged Fest Parameters late Matter r-di-oxide (SO ₂) of Nitrogen (NOx)	k Detaíls Test Method	25 361 25.1 2078 Results 46.8 BDL (DL: 3.0) 334	25 361 24.5 2022 CPCB Norms 75 710	cm °C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³
St. No. 01 02 03 04 St. No. 01 02 03 04	Stack f Tempe Velocit Volume Particu Sulphu Oxides Non-Me Carbon	Stac Diameter rature y e of Gas Discharged Fest Parameters late Matter r-di-oxide (SO ₂) of Nitrogen (NOx) ethane Hydrocarbon	k Details Test Method IS 11255 Part 1-1985 (RA:2019)	25 361 25.1 2078 Results 46.8 BDL (DL: 3.0) 334 93 111	25 361 24.5 2022 CPCB Norms 75 75 710 100	cm °C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³
St. No. 01 02 03 04 St. No. 01 02 03 04 St. No. 01 02 03 04 05 06	Stack f Tempe Velocit Volume Particu Sulphu Oxides Non-Me Carbon	Stac Diameter rature y e of Gas Discharged Test Parameters late Matter r-di-oxide (SO ₂) of Nitrogen (NOx) ethane Hydrocarbon Monoxide as CO dioxide as CO ₂	k Details Test Method IS 11255 Part 1-1985 (RA:2019)	25 361 25.1 2078 Results 46.8 BDL (DL: 3.0) 334 93 111 7.3	25 361 24.5 2022 CPCB Norms 75 75 710 100	cm °C m/sec Nm³/hr Unit mg/Nm³ ppmv ppmv mg/Nm³ mg/Nm³
St. No. 01 02 03 04 Sl. No. 01 02 03 04 Sl. No. 01 02 03 04 Sl. No. 01 02 03 04 05 06 07	Stack I Tempe Velocit Volume Particu Sulphu Oxides Non-Me Carbon Oxyger	Stac Diameter rature y e of Gas Discharged Test Parameters late Matter r-di-oxide (SO ₂) of Nitrogen (NOx) ethane Hydrocarbon Monoxide as CO dioxide as CO ₂	k Details Test Method IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05	25 361 25.1 2078 Results 46.8 BDL (DL: 3.0) 334 93 111	25 361 24.5 2022 CPCB Norms 75 75 710 100	cm °C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³
St. No. 01 02 03 04 05 06 07	Stack I Tempe Velocit Volume Particu Sulphu Oxides Non-Me Carbon Oxyger	Stac Diameter rature y e of Gas Discharged Fest Parameters late Matter r-di-oxide (SO ₂) of Nitrogen (NOx) ethane Hydrocarbon Monoxide as CO dioxide as CO a dioxide as CO a as O ₂	K Details Test Method IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Trad of Report	25 361 25.1 2078 Results 46.8 BDL (DL: 3.0) 334 93 111 7.3 11.2	25 361 24.5 2022 CPCB Norms 75 710 100 150 	cm °C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ mg/Nm ³ %
St. No. 01 02 03 04 05 06 07	Stack I Tempe Velocit Volume Particu Sulphu Oxides Non-Me Carbon Oxyger	Stac Diameter rature y e of Gas Discharged Fest Parameters late Matter r-di-oxide (SO ₂) of Nitrogen (NOx) ethane Hydrocarbon Monoxide as CO dioxide as CO a dioxide as CO a as O ₂	K Details Test Method IS 11255 Part 1-1985 (RA:2019) CML/STACK/SOP/05 K/07 Trad of Report	25 361 25.1 2078 Results 46.8 BDL (DL: 3.0) 334 93 111 7.3 11.2 Chennai Mett ~. <u>5</u> Review V. S S	25 361 24.5 2022 CPCB Norms 75 710 100 150 	cm °C m/sec Nm ³ /hr Unit mg/Nm ³ ppmv ppmv mg/Nm ³ % % te Limited, te Limited, R

CHENNAI METTEX LAB PRIVATE LIMITED

Jothi Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032, Tamil Nadu, INDIA Phone : +91 44 22323163, 22311034, 42179490, 42179491 | CIN : U74999TN2008PTC069459 Email : test@mettexlab.com | Web : www.mettexlab.com

	TEST REPORT	Page No. 1 of 1
ISSUED TO	: M/s. Solara Active Pharma Sciences Ltd,	T.C Date : 22.09.2023
	Periyakalapet, Puducherry – 605 014.	T.C No : CML/23-24/53699
Party's Ref	: SRF date: 15.09.2023	Date of Receipt: 15.09.2023
Lab No	: 24057805	Test Completed on: 21.09.2023

Sample Description: Stack Emission – IPCA Plant Exhaust (as stated by customer)

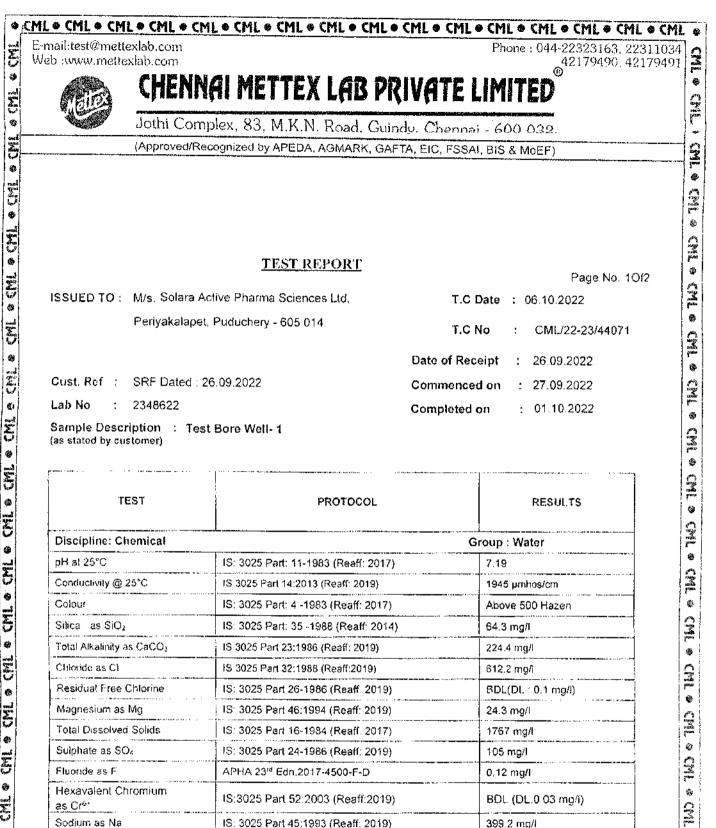
Date of Sampling: 15.09.2023

Sampling Plan & Procedure: CML/STACK/SOP/08

Discipline / Group: Chemical / Atmospheric Pollution

R

SI. No.		Stack Details			Unit
01	Stack Diameter		0.25		cm
02	Temperature 33 Velocity 8.2		33		°C
03			m/sec		
04	Volume of Gas Discharg	ged	1410)	Nm³/hr
SI. No.	Test Parameters	Test Method	Results	CPCB Norms	Unit
01	Acid Mist	USEPA Method 26A	13.6	35	mg/Nm ³


- End of Report ------For Chennai Mettex Lab Private Limited,

Reviewed & Authorized By

V. SELVAKUMAR Senior Chemist Authorised Signatory

NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing., except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while perishable & environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer.

42.2 mg/i ...Contd....2

4

<u>_</u>

¢ 92

۲

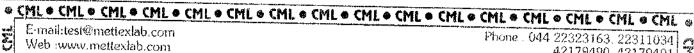
P. KAVITHA Technical Manager

NOTE. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenciers will be hable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing, except in case of regulatory samples, which will be retained for a specific period as per statutory regimement, while perishable a environmental testing related remnant samples will be discarded consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chemist ŵ 0

IS: 3025 Part 45:1993 (Reaff: 2019)

Polassium as K

6


ŝ

4

2 **6**8

S

ill:test@mett :www.niette	exlab.com		Phone : 044-22323163, 223 42179490, 421 ®
Neiza	CHENNAI	METTEX LAB PRIVAT	E LIMITED
	Jothi Complex	, 83, M.K.N. Road, Guindy. Che	nnai - 600 032.
	(Approved/Recogr	lized by APEDA, AGMARK, GAFTA, EIC, F	SSAI, BIS & MOEF)
Ļ.	ab No: 2348622	T.C No: CML/22-23/44071 Dated : 0	6,10.2022 Page No. 2 of 2
	TEST	PROTOCOL	RESULTS
60D @ 27	7°C for 3 days	IS:3025 Part 44:1993 (Reaff:2019)	BDL (DL:2.0 mg/l)
Chemical	Oxygen Demand	IS:3025 Part 58:2006 (Reaff:2017)	11 mg/i
; Calcium as	; Ca	IS: 3025 Part 40:1991 (Reaff: 2019)	140 2 mg/l
Zinc as Zn		IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.05 mg/l)
Total Chro	mium as Cr	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Copper as	Cu	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Cadmium a	as Cd	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL 0.001 mg/l)
Lead as Pt		IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL;0.005 mg/l)
Selenium a	as Se	IS: 3025 Part 65.2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Total Arser	nic as As	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Mercury as	з Нg	USEPA 200.8	BDL (DL:0.0005 mg/l)
Nickel as N		IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Manganes	e as Mn	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Molybdenu	ini as Mo	IS: 3025 Part 65:2014 (Reaff:2019)	BDI. (DL:0.02 mg/l)
Barium as	Ва	IS: 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.05 mg/l)
Antimony	as Sb	IS: 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.003 mg/l)
Silver as A	\ġ	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Hexane			Not Detected
Acetone		Instrument Used by GCMS - Method	Not Detected
Methanol			Not Detected
Note : BE	L Below Detection	Limit, DL - Detection Limit, APHA - America	an Public Health Association.
		End of ReportFor Cl	hennai Mettex Lab Privat Limited
		Review	Hum Ch. ed & Authorized By
		Tec	P. KAVITHA Shnical Manager
Any unauthorize Inless otherwise Jetion date of te	ed alteration, forgery or f stated the submitted resu sting., except in case of r	abilitation of the content or appearance of this doc its in this test report refer only to the sample(s) tester egulatory samples, which will be retained for a specifi will be discarded consequent upon completion of t pt in full, without prior written approval of the labor new with the appropriate between Channai Metter Lab	ument is unlawful and offenders will be liable f I and such sampla(s) are retained for 15 days o c period as per statutory requirement: white pe

6ă

Ë

٠

Đ

œ

•

200

THU

e SMS.

۲

. J N N

ø 583

ø ž

۲ ž

Ф G

CML . CML . CML . CML . CML .

8 120

ø

ž

•

13.4

CHENNAI METTEX LAB PRIVATE LIMITED

Jothi Complex. 83, M.K.N. Road, Guindy, Chennai - 600 032.

(Approved/Recognized by APEDA, AGMARK, GAFTA, EIC, FSSAI, BIS & MoEF)

TEST REPORT

				Page No. 1of2
ISSUED TO :	M/s, Solara Active Pharma Sciences Ltd,	T.C Date	:	06.10.2022
	Periyakalapet, Puduchery - 605 014.			
		T.C No	;	CML/22-23/44072
		Date of Receipt	:	26.09.2022
Cust. Ref :	SRF Dated : 26.09.2022	Commenced on	:	27.09.2022
Lab No :	2348623	Completed on	:	01.10.2022
Sample Descr (as stated by cus	iption : Test Bore Well- 2 ^{stomer})			

TEST	PROTOCOL	RESULTS
Discipline: Chemical	Grou	p:Water
pH at 25°C	IS: 3025 Part: 11-1983 (Reaff: 2017)	7.21
Conductivity @ 25°C	IS 3025 Part 14:2013 (Reaff: 2019)	2015 µmhas/cm
Colour	IS: 3025 Part: 4 -1983 (Reaff: 2017)	Above 500 Hazen
Silica as SiO ₂	IS: 3025 Part: 35 -1988 (Reaff: 2014)	64.9 mg/l
Total Alkalinity as CaCO3	IS 3025 Part 23:1986 (Reaff: 2019)	224.4 mg/l
Chloride as Cl	IS 3025 Part 32:1988 (Reaff:2019)	607.4 mg/l
Residual Free Chlorine	IS: 3025 Parl 26-1986 (Reaff. 2019)	BDL(DL ; 0.1 mg/l)
Magnesium as Mg	IS: 3025 Part 46:1994 (Reaff: 2019)	24.3 mg/l
Total Dissolved Solids	IS: 3025 Part 16-1984 (Reaff, 2017)	1749 mg/l
Sulphate as SO₄	IS: 3025 Part 24-1986 (Reaff: 2019)	91.5 mg/l
Fluoride as F	APHA 231 Edn.2017-4500-F-D	0.10 mg/i
Hexavalent Chromium as Ci ^{e+}	IS:3025 Part 52:2003 (Reaff:2019)	BDL (DL:0.03 mg/l)
Sodium as Na	IS: 3025 Part 45:1993 (Reaff: 2019)	373.6 mg/l
Potassium as K	IS: 3025 Part 45:1993 (Reaff: 2019)	14 2 mg/l

Ì ...Contd....2

NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample's tested and such sample's are retained for 15 days only from the completion date of testing, except in case of regulationy samples, which will be retained for a specific period as per statutory requirement; while pensionle event upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced event in full, without prior written approval of the laboratory. This report is for the exclusive use of Chemical battery battery.

Phone . 044 22323163, 22311034

42179490, 42179491 ®

۲

S

Jothi Comp (Approved/Reco	AI METTEX LAB PRIVA	[©] ^{42179490. 42175}
(Approved/Reco	lex, 83. M.K.N. Road, Guindy, Ch	
(Approved/Reco		ennai - 600 032.
	ognized by APEDA, AGMARK, GAFTA, EIC,	FSSAI, BIS & MoEF)
Lab No: 2348623 T.C N	lo; CML/22-23/44072 Dated : 06.10.202	22 Page No. 2 of 2
TEST	PROTOCOL	RESULTS
BOD @ 27°C for 3 days	IS:3025 Part 44:1993 (Reaff:2019)	4 mg/l
Chemical Oxygen Demand	IS:3025 Part 58:2006 (Reaff:2017)	22 mg/l
Calcium as Ca	IS: 3025 Part 40:1991 (Reaff: 2019)	120.2 mg/l
Zinc as Zn	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.05 mg/l)
Total Chromium as Cr	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Copper as Cu	1S 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Cadmium as Cd	IS. 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.001 mg/l)
Lead as Pb	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Selenium as Se	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL.0.005 mg/l)
Total Arsenic as As	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Mercury as Hg	USEPA 200.8	BDL (DL:0.0005 mg/l)
Nicket as Ni	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Manganese as Mn	IS. 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Molybdenum as Mo	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Barium as Ba	IS: 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.05 mg/l)
Antimony as Sb	IS: 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.003 mg/l)
Silver as Ag	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Hexane		Not Detected
Methanol	Instrument Used by GCMS - Method	Not Detected
	Limit, DL – Detection Limit, APHA – American	Not Detected
	End of Report	Public Health Association
	For C	Hennai Mettex Lab Privat Limited
	P	ed & Autoonzed By : KAVITHA nical Manager
my unautionized alteration, forgery or	labilitation of the content or appearance of this docu ults in this test report refer only to the sample(s) tested regulatory samples, which will be retained for a specific s will be discarded consequent upon completion of te ept in full, without prior written approval of the labora	ment is unlawful and offenders will be liable for lar

÷.,

Web :www.mettexlab.com

. مربع

CHENNAI METTEX LAB PRIVATE LIMITED

ŵ

.

CME

ø

•

a Chi

Ø

SMC M

e cai

o CMI

۴

tra.

Ð

Second Chil

Ð

SML M

e Car

е 140

e crit

O (ML

@ CML

۲

ØÌ.

Phone: 044-22323163, 22311034

42179490, 42179491 ®

Jothi Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032.

(Approved/Recognized by APEDA, AGMARK, GAFTA, EIC, FSSAI, BIS & MoEF)

TEST REPORT

				Page No. 1of2
ISSUED TO :	M/s. Solara Active Pharma Sciences Ltd,	T.C Date	;	06.10.2022
	Periyakalapet, Puduchery - 605 014.	T.C No	!	CML/22-23/44073
		Date of Receipt	:	26.09.2022
Cust. Ref :	SRF Dated : 26.09.2022	Commenced on	:	27.09.2022
Lab No ;	2348624	Completed on	;	01.10 2022
Sample Dosor (as stated by cus	iption : Test Bore Well- 3 tomer)			

TEST	PROTOCOL	RESULTS
Discipline: Chemical	Group	> : Water
pH at 25°C	IS: 3025 Part: 11-1983 (Reaff: 2017)	7.26
Conductivity @ 25°C	IS 3025 Part 14:2013 (Realf: 2019)	2232 µmhos/cm
Colour	IS: 3025 Part: 4 -1983 (Reaff: 2017)	Above 500 Hazen
Silica as SiO ₂	IS: 3025 Parl: 35 -1988 (Reaff: 2014)	60 mg/l
Total Alkalinity as CaCOa	IS 3025 Part 23:1986 (Reaff: 2019)	244.8 mg/l
Chloride as Cl	IS 3025 Part 32:1988 (Reaff:2019)	617.1 mg/
Residual Free Chlorine	IS: 3025 Part 26-1986 (Reaff, 2019)	BDL(DL : 0.1 mg/l)
Magnesium as Mg	IS: 3025 Part 46:1994 (Reaff: 2019)	24.3 mg/l
Total Dissolved Solids	IS: 3025 Part 16-1984 (Reaff, 2017)	1759 mg/l
Sulphate as SO ₄	IS: 3025 Part 24-1986 (Reaff: 2019)	98 mg/l
Fluoride as F	APHA 23 rd Edn.2017-4500-F-D	0.15 mg/l
Hexavalent Chromium as Cr ^a	IS 3025 Part 52 2003 (Reaff: 2019)	BDL (DL:0.03 mg/l)
Sodium as Na	IS: 3025 Part 45:1993 (Reaff: 2019)	384.2 mg/l
Potassium as K	IS: 3025 Part 45:1993 (Reaff: 2019)	19.2 mg/l

H. ...Contd....2

NOTE: Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders will be liable for flegal action. Unlass otherwise stated the submitted results in this test report refer only to the sample's tested and such sample's are retained for 15 days only from the completion date of testing, except in case of regulatory samples, which will be retained for a specific period as per stated by requirement, while peristable consequent upon completion of testing. Samples are not drawn by us unless otherwise stated. This document cannot be reproduced except in full, without pror written approval of the laboratory. This report is for the exclusive use of Chemical Matter Lab scustomer, and is provided in accordance with the agreement between Chemical Matter Lab and its Customer.

6

l:test@mettexlab.com www.mettexlab.com		Phone : 044-2232316 4217949
	AI METTEX LAB PRIVA	TE LIMITED [®]
Jothi Com	plex, 83, M.K.N. Road, Guindy, Ch	ennai - 600 032.
(Approved/Re	cognized by APEDA, AGMARK, GAFTA, EIC,	FSSAI, BIS & MoEF)
	No: CML/22-23/44073 Dated : 06.10.20	
TEST	PROTOCOL	RESULTS
BOD @ 27°C for 3 days	IS:3025 Part 44:1993 (Reaff:2019)	BDL (DL:2 0 mg/i)
Chemical Oxygen Demand	IS:3025 Part 58:2006 (Reaff:2017)	11 mg/l
Calcium as Ca	IS: 3025 Part 40:1991 (Reaff: 2019)	140.2 mg/l
Zinc as Zn	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.05 mg/l)
Fotal Chromium as Cr	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/t)
Copper as Cu	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Cadmium as Cd	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.001 mg/l)
ead as Pb	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Selenium as Se	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0 005 mg/l)
Fotal Arsenic as As	IS: 3025 Part 65:2014 (Realf:2019)	BDL (DL:0.005 mg/l)
Mercury as Hg	USEPA 200.8	BDL (DL:0.0005 mg/l)
lickel as Ni	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Aanganese as Mn	IS: 3025 Parl 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Aolybdenum as Mo	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Barium as Ba	IS- 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.05 mg/l)
Intimony as Sb	IS: 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.003 mg/l)
Silver as Ag	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
lexane		Not Detected
(cetone	Instrument Used by GCMS - Method	Not Detected
Methanol		Not Detected
fote : BDL - Below Detectio	on Limit, DL – Detection Limit, APHA – America	n Public Health Association.
	Reviewed P. H	nai MettexsLab Privat Limited
unauthorized alteration forces	or falsification of the content or appearance of this docu sults in this test report refer only to the sample(s) tested of regulatory samples, which will be retained for a specific les will be discarded consequent upon completion of a veept in full, without prior written approval of the labor dance with the appearance between Consequent Mettor to be	-

¢

CHENNAI METTEX LAB PRIVATE LIMITED

Jothi Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032.

(Approved/Recognized by APEDA, AGMARK, GAFTA, EIC, FSSAI, BIS & MoEF)

TEST REPORT

ISSUED TO :	M/s. Solara Active Pharma Sciences Ltd.			Page No. 1of2
		T,C Date	;	06.10.2022
	Periyakalapet, Puduchery - 605 014.	T.C No	:	CML/22-23/44074
		Date of Receipt	:	26.09.2022
	SRF Dated : 26.09.2022	Commenced on	:	27.09.2022
• • • •	2348625 iption : Test Bore Well- 4 tomer)	Completed on	:	01.10.2022

TEST	PROTOCOL	RESULTS
Discipline: Chemical	Group	· : Water
pH al 25°C	IS: 3025 Part: 11-1983 (Reaff: 2017)	7.16
Conductivity @ 25°C	IS 3025 Part 14:2013 (Reaff: 2019)	2151 µmhos/cm
Colour	IS: 3025 Part: 4 -1983 (Reaff: 2017)	Above 500 Hazen
Silica as SiO ₂	IS: 3025 Part: 35 -1988 (Reaff: 2014)	67 mg/l
Total Alkalinity as CaCOs	IS 3025 Part 23: 1986 (Reaff: 2019)	234.6 mg/l
Chloride as Cl	IS 3025 Part 32:1988 (Reaff:2019)	621.9 mg/l
Residual Free Chlorine	IS: 3025 Part 26-1986 (Reaff. 2019)	BDL(DL : 0.1 mg/l)
Magnesium as Mg	IS: 3025 Part 46:1994 (Reaff: 2019)	21.8 mg/l
Total Dissolved Solids	IS: 3025 Part 16-1984 (Reaff. 2017)	1770 mg/l
Sulphate as SO4	IS: 3025 Part 24-1986 (Reaff: 2019)	101 mg/
Fluoride as F	APHA 23rd Edn.2017-4500-F-D	0.14 mg/i
Hexavalent Chromium as Cr ^{oi}	IS 3025 Part 52:2003 (Reaff:2019)	BDL (DL:0.03 mg/l)
Sodium as Na	IS: 3025 Part 45:1993 (Reaff: 2019)	381 mg/j
Potassium as K	IS: 3025 Part 45:1993 (Reaff: 2019)	22.3 mg/l

..Contd....2

۲

٢

¢

۲ GR.

43

۲

lean New

働

ø

ø

۲

ø

\$

8

豢

۲

٢

e cml e cml e cml

۲

Ф¥

2

Phone : 044-22323163, 22311034

42179490, 42179491 ©

NOTE: Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders will be itable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only in the completion date of testing, except in case of regulatory samples, which will be retained for a specific period as per statutory requirements while perishable stated. This document cannot be reproduced except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Metters Lab's customer, and is provided in accordance with the agreement between Chennai Metters Lab and is Continuer.

W

nail:test@meti b :www.metic	exlab.com		Phone : 044-22323163, 2 42179490, 4 ®	
Mais		I METTEX LAB PRIVAT		
<u> </u>		ex, 83, M.K.N. Road, Guindy, Cho		
· · · · · · · · · · · · · · · · · · ·	(Approved/Reco	gnized by APEDA, AGMARK, GAFTA, EIC,	FSSAI, BIS & MoEF)	• · · · · · · · · · · · · · · · · · · ·
Lab No: 2	348625 T.C N	o; CML/22-23/44074 Dated : 06.10.202	22 Page No. 2 of 2	
	TEST	PROTOCOL	RESULTS	
BOD @ 27	*C for 3 days	IS:3025 Part 44:1993 (Reaff:2019)	BDì. (DL:2.0 mg/l)	
Chemical (Oxygen Demand	IS:3025 Part 58:2006 (Reaff:2017)	12 mg/l	
Calcium as	Са	IS: 3025 Part 40:1991 (Reaff: 2019)	148.2 mg/l	
Zinc as Zn		IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.05 mg/l)	
Total Chror	nium as Cr	IS: 3025 Part 65:2014 (Reaff:2019)	8DL (DL:0.02 mg/l)	
Copper as	Cu	IS: 3025 Part 65:2014 (Reaff:2019)	BDI. (DL:0.02 mg/l)	
Cadmium a	s Cd	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.001 mg/!)	
Lead as Pb		IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)	
Selenium a	s Se	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/t)	
Total Arsen	ic as As	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)	
Mercury as	Hg	USEPA 200.8	BDL (DL:0.0005 mg/l)	
Nickel as N	i	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)	
Manganese	······································	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)	
Molybdenu	n as Mo	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)	
Barium as E	· · · · · · · · · · · · · · · · · · ·	IS: 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.05 mg/l)	
Antimony a:		IS: 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.003 mg/l)	
Silver as Ag	· · · · · · · · · · · · · · · · · · ·	IS. 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)	
Hexane		_	Not Detected	
Acetone		Instrument Used by GCMS - Method	Not Delected	
Methanol	Dolow Data at		Not Detected	
		Reviewed	ennai Mettex Lab Privat Limited Hennel & Authorized By R. KAVITHA	
Any unauthorized Unless otherwise s	l alteration, forgery or lated the submitted resu	Tech falsification of the content or appearance of this docu- lats in this test report refer only to the sample(s) tested egulatory samples, which will be retained for a specific will be discarded consequent upon completion of te ept in full, without prior written approval of the labora- nce with the agreement between Chennai Metter Lab	mical Manager ment is unlawful and offenders will be liable and such sample(s) are retained for 15 days	tor only

www.mette	textab.com extab.com		Phone : 044 22323163, 42179490.
(TEIE)		iai mettex lab pr	VIVATE LIMITED
	Jothi Con	oplex, 83, M.K.N. Road, Guin	dy, Chennai - 600 032
	(Approved/Re	ecognized by APEDA, AGMARK, GAF	TA, EIC, FSSAL BIS & MOFE)
SSUED TO ; ust. Ref ;		<u>TEST REPORT</u> ctive Pharma Sciences Ltd, Puduchery - 605 014. 26.09.2022	Page No T.C Date : 06.10.2022 T.C No : CML/22-23/44075 Date of Receipt : 26.09.2022 Commenced on : 27.09.2022
ab No :	2348626		Commenced on : 27.09.2022 Completed on : 01.10.2022
ample Descr s stated by cu	iption : Tes stomer}	t Bore Well- 5	
ample Descr s stated by cu	iption : Tes stomer) TEST	t Bore Welt- 5 PROTOCOL	RESULTS
s slated by cu	stomer}		
Discipline	TEST		Group : Water
Discipline pH at 25°C Conductivit	TEST	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2019)	Group : Water
Discipline pH at 25°C Conductivit Colour	TEST : Chemical y @ 25°C	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part: 4 -1983 (Reaff: 2017)	Group : Water 7.28 2036 µmhos/cm Above 500 Hazen
Discipline pH at 25°C Conductivit Silica as t	TEST :: Chemical y @ 25°C	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part: 4 -1983 (Reaff: 2017) IS: 3025 Part: 35 -1988 (Reaff: 2014)	Group : Water 7.28 2036 µmhos/cm Above 500 Hazen
Discipline pH at 25°C Conductivit Silica as t	TEST :: Chemical y @ 25°C SiO ₂ wily as CaCO ₃	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part: 4 -1983 (Reaff: 2017) IS: 3025 Part: 35 -1988 (Reaff: 2014) IS: 3025 Part 23:1986 (Reaff: 2019)	Group : Water 7.28 2036 μmhos/cm Above 500 Hazen 68 mg/l 214.2 mg/l
Discipline pH at 25°C Conductivit Colour Silica as t Total Alkalia Chioride as	TEST :: Chemical y @ 25°C SiO ₂ wily as CaCO ₃	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part: 4 -1983 (Reaff: 2019) IS: 3025 Part: 35 -1988 (Reaff: 2014) IS 3025 Part 23:1986 (Reaff: 2019) IS 3025 Part 32:1988 (Reaff: 2019)	Group : Water 7.28 2036 µmhos/cm Above 500 Hazen 68 mg/l 214.2 mg/l 617.1 mg/l
Discipline pH at 25°C Conductivit Colour Silica as t Total Alkalia Chioride as	TEST :: Chemical y @ 25°C SiO ₂ hily as CaCO ₂ Cl ree Chlorine	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part: 4 -1983 (Reaff: 2019) IS: 3025 Part: 35 -1988 (Reaff: 2014) IS: 3025 Part 23: 1986 (Reaff: 2019) IS: 3025 Part 23: 1986 (Reaff: 2019) IS: 3025 Part 26-1986 (Reaff: 2019) IS: 3025 Part 26-1986 (Reaff: 2019)	Group : Water 7.28 2036 μmhos/cm Above 500 Hazen 68 mg/l 214.2 mg/l 617.1 mg/l BDL(DL : 0.1 mg/l)
Discipline pH at 25°C Conductivit Colour Silica as Total Alkalia Chloride as Residual Fi	TEST :: Chemical y @ 25°C SiO ₂ hily as CaCO ₃ Cl ree Chlorine t as Mg	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part: 4 -1983 (Reaff: 2019) IS: 3025 Part: 35 -1988 (Reaff: 2014) IS 3025 Part 23:1986 (Reaff: 2019) IS: 3025 Part 26-1986 (Reaff: 2019) IS: 3025 Part 26-1986 (Reaff: 2019) IS: 3025 Part 46:1994 (Reaff: 2019)	Group : Water 7.28 2036 µmhos/cm Above 500 Hazen 68 mg/l 214.2 mg/l 617.1 mg/l BDL(DL : 0.1 mg/l) 31.5 mg/l
Discipline Discipline pH at 25°C Conductivit Colour Silica as t Total Alkalia Chloride as Residual Fr Magnesium	TEST :: Chemical :: Chemical :: Q 25°C :: Chemical :: Chemical :	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part: 35 -1988 (Reaff: 2014) IS: 3025 Part 23: 1986 (Reaff: 2019) IS: 3025 Part 23: 1986 (Reaff: 2019) IS: 3025 Part 26-1986 (Reaff: 2019) IS: 3025 Part 46: 1994 (Reaff: 2019) IS: 3025 Part 16-1984 (Reaff: 2017)	Group : Water 7.28 2036 μmhos/cm Above 500 Hazen 0 68 mg/l 214.2 mg/l 617.1 mg/l BDL(DL : 0.1 mg/l) 31.5 mg/l 1761 mg/l
Discipline pH at 25°C Conductivit Colour Silica as Total Alkala Chloride as Residual Fi Magnesium Total Disso	TEST :: Chemical :: Chemical :: Q 25°C SiO ₂ :: Chemical :: Che	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part: 4 -1983 (Reaff: 2019) IS: 3025 Part: 35 -1988 (Reaff: 2014) IS 3025 Part 23:1986 (Reaff: 2019) IS: 3025 Part 26-1986 (Reaff: 2019) IS: 3025 Part 26-1986 (Reaff: 2019) IS: 3025 Part 46:1994 (Reaff: 2019)	Group : Water 7.28 2036 µmhos/cm Above 500 Hazen 68 mg/l 214.2 mg/l 617.1 mg/l BDL(DL : 0.1 mg/l) 31.5 mg/l
Discipline pH at 25°C Conductivit Colour Silica as t Total Alkalia Chloride as Residual Fri Magnesium Total Disso Sulphate as Fluoride as Hexavalen	TEST :: Chemical :: Chemical :: Q 25°C SiO ₂ :: Chemical :: Che	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2017) IS: 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part: 4 -1983 (Reaff: 2019) IS: 3025 Part 23: 1986 (Reaff: 2019) IS: 3025 Part 23: 1986 (Reaff: 2019) IS: 3025 Part 26-1986 (Reaff: 2019) IS: 3025 Part 46: 1994 (Reaff: 2019) IS: 3025 Part 16-1984 (Reaff: 2017) IS: 3025 Part 24-1986 (Reaff: 2019)	Group : Water 7.28 2036 µmhos/cm Above 500 Hazen 68 mg/l 214.2 mg/l 617.1 mg/l BDL(DL : 0.1 mg/l) 31.5 mg/l 1761 mg/l 98 mg/l 0.15 mg/l
Discipline pH at 25°C Conductivit Colour Silica as t Total Alkalia Chloride as Residuat Fi Magnesium Total Disso Sulphate as Fluoride as	TEST :: Chemical :: Chemical	PROTOCOL IS: 3025 Part: 11-1983 (Reaff: 2017) IS 3025 Part 14:2013 (Reaff: 2017) IS: 3025 Part 14:2013 (Reaff: 2019) IS: 3025 Part: 4 -1983 (Reaff: 2014) IS: 3025 Part: 35 -1988 (Reaff: 2014) IS: 3025 Part: 35 -1988 (Reaff: 2014) IS: 3025 Part: 35 -1988 (Reaff: 2014) IS: 3025 Part 23:1986 (Reaff: 2019) IS: 3025 Part 26-1986 (Reaff: 2019) IS: 3025 Part 26-1986 (Reaff: 2019) IS: 3025 Part 46:1994 (Reaff: 2019) IS: 3025 Part 16-1984 (Reaff: 2017) IS: 3025 Part 24-1986 (Reaff: 2019) IS: 3025 Part 24-1986 (Reaff: 2019) IS: 3025 Part 24-1986 (Reaff: 2019)	Group : Water 7.28 2036 µmhos/cm Above 500 Hazen) 68 mg/l 214.2 mg/l 617.1 mg/l BDL(DL : 0.1 mg/l) 31.5 mg/l 1761 mg/l 98 mg/l

\$

NOTE: Any unauthorized alteration, forgeny or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only from the completion date of testing, except in case of regulatory samples, which will be retained for a specific period as per statutory regulatorement, while peri-shable of testing, samples are not drawn by us unless otherwise stated. This document cannot be reproduced except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennai Mettex Lab's customer, and is provided in accordance with the agreement between Chennai Mettex Lab and its Customer. R

SPR.42 P CMT & CMT

Mid	Chenna	i mettex lab privat	e limited	
	Jothi Comple	ex, 83, M.K.N. Road, Guindy. Che	nnai - 600 032.	
	(Approved/Recog	nized by APEDA, AGMARK, GAFTA, EIC, F	SSAI, BIS & MoEF)	
Lab No: 2	348626 T.C No	: CML/22-23/44075 Dated : 06.10.202;	Page No. 2 of 2	
	TEST	PROTOCOL	RESULTS	
BOD @ 27	7°C for 3 days	IS'3025 Part 44:1993 (Reaff:2019)	BDL (DL:2.0 mg/l)	
	Oxygen Demand	IS:3025 Part 58:2006 (Reaff:2017)	12 mg/l	
Calcium as		IS: 3025 Part 40.1991 (Reaff: 2019)	136.2 mg/l	
Zinc as Zn		IS: 3025 Part 65-2014 (Reaff:2019)	BDL (DL:0.05 mg/l)	
Total Chro	mium as Cr	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)	
Copper as	Cu	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)	
Cadmium a	as Cd	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.001 mg/l)	
Lead as Pt	b	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)	
Selenium a	as Se	IS: 3025 Part 65:2014 (Reaff:2019)	BDI. (DL:0.005 mg/l)	
Total Arse	nic as As	IS: 3025 Part 65.2014 (Reaff:2019)	BDL (DL:0.005 mg/l)	
Mercury as	s Hg	USEPA 200.8	BDL (DL:0.0005 mg/l)	
Nickel as N	Ni	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)	
Manganes	e as Mn	IS 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)	
Molybdenu	ım as Mo	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)	
Banum as	Ba	IS: 3025 Parl 65:2014 (Reaff:2019)	BDL(DL:0.05 mg/l)	
Antimony a	as Sb	IS: 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.003 mg/l)	
Silver as A	9	IS: 3025 Part 65.2014 (Reaff:2019)	BDL (DL:0.005 mg/l)	
Hexane			Not Detected	
Acetone		Instrument Used by GCMS - Method	Not Detected	
Methanol			Not Detected	
		Review	Thennai Mettex Lab Privat Limited Wed & Authorized By P. KAVITHA	
Any unauthorize	ed alteration, foreers or		nical Manager	for b

Web :www.mettexlab.com

5

磅

Ē

ø

ž

0 Tes

e Tur

۲

j U

۲

20

¢

4

ø

ž

۲

Z

٢

CPIC

۲

ž

CML ©

CMI 0

e W

ø

٩

2

ø

6 CML

CME

¢

CHENNAI METTEX LAB PRIVATE LIMITED

Jothi Complex, 83. M.K.N. Road, Guindy, Chennai - 600 032.

(Approved/Recognized by APEDA, AGMARK, GAFTA, EIC, FSSAI, BIS & MoEF)

TEST REPORT

				Page No. 1of 2
ISSUED TO :	M/s, Solara Active Pharma Sciences Ltd,	T.C Date	:	06.10.2022
	Periyakalapet, Puduchery - 605 014.	T,C No	:	CML/22-23/44076
		Date of Receipt	:	26.09.2022
Cust. Ref ;	SRF Dated : 26,09,2022	Commenced on	:	27.09.2022
Lab No ;	2348627	Completed on	÷	01.10.2022
Sample Descr (as stated by cus	iption : Test Bore Well- 6 tomer)	·		

TEST	PROTOCOL	RESULTS
Discipline: Chemical	Group : \	
pH at 25*C	IS: 3025 Part: 11-1983 (Reaff: 2017)	7.24
Conductivity @ 25°C	IS 3025 Part 14:2013 (Reaff: 2019)	2028 µmhos/cm
Colour	IS: 3025 Part: 4 -1983 (Reaff: 2017)	Above 500 Hazen
Silica as SiO ₂	IS: 3025 Part: 35 -1988 (Reaff: 2014)	59 mg/t
Total Alkalinity as CaCO3	IS 3025 Part 23:1986 (Reaff: 2019)	244.8 mg/l
Chloride as Cl	IS 3026 Part 32:1988 (Reaff:2019)	621.9 mg/l
Residual Free Chlorine	IS: 3025 Part 26-1986 (Reaff. 2019)	BDL(DL : 0.1 mg/l)
Magnesium as Mg	IS: 3025 Part 46:1994 (Reaff: 2019)	29.1 mg/l
Total Dissolved Solids	IS: 3025 Part 16-1984 (Reaff. 2017)	1756 mg/l
Sulphate as SO₄	IS: 3025 Part 24-1986 (Reaff: 2019)	108 mg/l
Fluoride as F	APHA 23 rd Edn.2017-4500-F-D	0.18 mg/l
Hexavalent Chromium as Cr ⁶	IS:3025 Part 52:2003 (Reaff:2019)	BDL (DL:0 03 mg/l)
Sodium as Na	IS: 3025 Part 45:1993 (Reaff: 2019)	374.2 mg/l
Potassium as K	IS: 3025 Part 45:1993 (Realf: 2019)	37.1 mg/l

....Contd,....2

NOTE: Any unauthorized alteration, longery or falsification of the content or appearance of this document is unlawful and offenders will be liable for legal action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are tradined for 15 days only from the completion date of testing, except in case of regulatory samples, which will be retained for a specific period as per statutory requirement; while periodicity samples, which will be retained for a specific period as per statutory requirement; while periodicity stated. This document cannot be reproduced except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chemonic Metters Lab scustomer, and is provided in accordance with the approval buttern. Danned Matters Lab scustomer and is provided in accordance with the approval buttern.

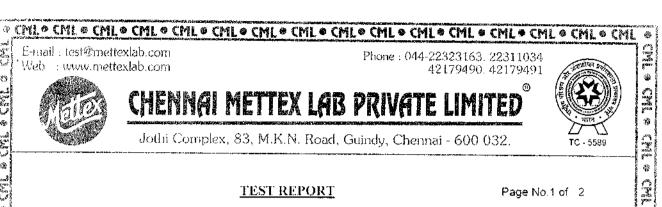
Phone: 044-22323163, 22311034

42179490, 42179491 © \$

0

e Chie

est@mettexlat ww.mettexlab	.com .com		Phone : 044-2232316 4217949
	Hennai	METTEX LAB PRIVAT	
ol V	thi Comple;	x, 83, M.K.N. Road, Guindy, Che	ennai - 600 032
(Ap	proved/Recogi	nized by APEDA, AGMARK, GAFTA, EIC, I	ESSAL BIS & MOEED
ab No: 23486;	27 T.C No:	CML/22-23/44076 Dated : 06.10.202	2 Page No. 2 of 2
ŤΕ	ST	PROTOCOL	RESULTS
BOD @ 27°C f	or 3 days	IS:3025 Part 44: 1993 (Reaff:2019)	3 mg/l
Chemical Oxyg	en Demand	IS:3025 Part 58:2006 (Reaff:2017)	18 mg/l
Calcium as Ca		IS: 3025 Part 40:1991 (Reaff: 2019)	136.2 mg/l
Zinc as Zn		IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.05 mg/l)
Total Chromium	as Cr	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Copper as Cu		IS: 3025 Part 65:2014 (Realf:2019)	BDL (DL:0.02 mg/l)
Cadmium as Cd		IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.001 mg/l)
ead as Pb		IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Selenium as Se	· · ·	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
Total Arsenic as	As	IS: 3025 Part 65:2014 (Realf:2019)	BDL (DL:0.005 mg/l)
Aercury as Hg		USEPA 200.8	BDE (DL:0.0005 mg/l)
lickel as Ni	-	IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.005 mg/l)
fanganese as N		IS: 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Aolybdenum as		IS. 3025 Part 65:2014 (Reaff:2019)	BDL (DL:0.02 mg/l)
Barium as Ba		IS: 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.05 mg/l)
Silver as Ag		IS: 3025 Part 65:2014 (Reaff:2019)	BDL(DL:0.003 mg/l)
lexane		IS: 3025 Part 65:2014 (Reaff:2019)	BDI. (DL:0.005 mg/l)
Acetone		Instrument Used by GCMS - Method	Not Delected
Aethanol			Not Detected
	elow Detection	Limit, DL – Detection Limit, APHA – America	i Not Detected
		End of Report	ann ablic health Association.
		For Cher	Annai Mettex Lab Privat Limited
			AVITHA al Manage r


action. Unless otherwise stated the submitted results in this test report refer only to the sample(s) tested and such sample(s) are retained for 15 days only for the discarded on the discarded and such sample(s) are retained for 15 days only for the sample(s) are retained for 15 days only for the sample(s) are retained for 15 days only for the sample(s) are retained for 15 days only for the sample(s) are retained for 15 days only for the sample(s) are retained for 15 days only for the sample(s) are retained for 15 days only for the sample(s) are retained for 15 days only for the sample(s) are retained for 15 days only for the sample(s) are retained for 15 days only for the sample(s) are retained for 15 days only for the perishable of testing. Samples are not drawn by us takes otherwise stated. This document cannot be reproduced except in full, without prior written approval of the laboratory. This report is for the exclusive use of Chennes where the area of the sample(s) are retained in accordance with the areament between Chennes Metex Lab and its Customer.

Web - www.mettextab.com		4-22323163, 22311034 42179490, 42179491
AL AND AND AND A	NAI METTEX LAB PRIVAT	
Jothi C	Complex, 83, M.K.N. Road, Guindy, Cher	anai - 600 032. TC - 5589
	TEST REPORT	
		Page No.1 of 2
ISSUED TO: M/s. Solara A		: 07.07.2022
Penyakalapet	t, Puduchery - 605 014. T.C No	CML/22-23/21902
Cust. Ref : SRF Dated : 2	5.06.2022 Date Of I	Receipt : 25.06.2022
Lab No : 2321739	Analysis	Commenced On : 25.06.2022
Sample Description : Test (as stated by customer)	Bore Well Water - 01. Analysis	Completed On : 04.07.2022
TEST	PROTOCOL	RESULTS
Discipline : Chemical		Group : Water
Colour (True Color)	IS: 3025 Part: 4 -1983 (Reaff: 2017)	5 Hazen
pH at 25°C	IS: 3025:Part: 11-1983 (Reaff:2017)	6,99
Conductivity @ 25°C	IS: 3025: Part:14-2013 (Reaff: 2019)	1494 µmhos/cm
Silica as SiO ₂	IS : 3025 Part 35:1988(Reaff:2019)	39.69 mg/l
Total Alkalinity as CaCO3	IS: 3025 Part 23-1986 (Reaff, 2019)	372 mg/l
Chloride as Cl	IS: 3025 Part 32-1988 (Reaff. 2019)	251 mg/l
Residual Free Chlorine	IS: 3025 Part 26-1986 (Reaff. 2019)	BDL(DL : 0.1 mg/l)
Magnesium as Mg	IS: 3025 Part 46:1994 (Reaff: 2019)	56 mg/l
Total Dissolved Solids	IS: 3025 Part 16-1984 (Reaff. 2017)	836 mg/i
Sulphate as SO4	IS: 3025 Part 24-1986 (Reaff: 2019)	32 mg/ł
Fluoride as F	APHA 23 rd Edn.2017-4500-F-D	0.37 mg/ł
Hexavalent Chromium as Cr ⁶⁺	IS: 3025 Part 52:2003 (Reaff : 2019)	BDL (DL:0.03 mg/l)
Sodium as Na	IS: 3025 Part 45:1993 (Reaff : 2019)	210 mg/l
Potassium as K	IS: 3025 Part 45:1993 (Reaff : 2019)	13.3 mg/l
BOD @ 27°C for 3 days	IS 3025 Part 44–1993 (Reaff.2019)	4 mg/t
Chemical Oxygen Demand Calcium as Ca	IS:3025 Part 58-2006 (Reaff:2017)	24 mg/l
Zinc as Zn	IS: 3025 Part 40:1991 (Reaff: 2019) IS: 3025 Part 65:2014(Reaff: 2019)	99.40 mg/l
Total Chromium as Cr	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Copper as Cu	IS: 3025 Part 65:2014(Reaff; 2019)	BDL (DL:0.02 mg/l) BDL (DL:0.02 mg/l)
Cadmium as Cd	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.001 mg/l)
Lead as Pb	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
		Contd2
	l	Hann Ch
9 except in case of regulatory samples, of ant scattaled with be discarded, consequent in static bill, walcout prior written approval of it generations between Chemical Metrix Lab and	Jacafication of the content or appearance of this document is trafault (repart refer only to the sample(s) tested and such sample(s) are in lead, will be reasoned for a specific period as per sourcely requires it on completion of testing. Sample's are not drawn by us tables of the laborating. This report is for the exclusive use of Chernal Metri its Customer.	retained for 15 days only from the completion, date some while pensheble & environmental testing relation otherwise stated. The document cannot be repredir- er Lab's enstormer, and is protock d in accomption to

ана сне	NNAI METTEX LAB PRIVATE	IIMITER® ((CSS)
IV A COMPANY BUTTOR BUTTOR	i Complex, 83, M.K.N. Road, Guindy, Chenn	
Lab No: 2321739	T.C No: CML/22-23/21902 Dated : 07.07.2022	Page No. 2 of 2
TEST	PROTOCOL	RESULTS
Selenium as Se	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Arsenic as As	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Mercury as Hg	USEPA 200.8	BDL (DL:0.0005 mg/l)
Nickel as Ni	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Manganese as Mn	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Molybdenum as Mo	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Barium as Ba	iS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.05 mg/l)
Antimony as Sb Silver as Ag	IS: 3025 Part 65:2014(Reaff; 2019) IS: 3025 Part 65:2014(Reaff; 2019)	BDL (DL:0.003 mg/l) BDL (DL:0.005 mg/l)
		Hammed Authorized by P. KAVITHA Schnical Manager

E-mail-test@met Web :www.mett				Phone : 044-22323163, 22311 42179490, 42179
	(HENNK	il mettex lab p	rivate i	
	Jothi Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032.			
	(Approved/Reco	ognized by APEDA. AGMARK, G	AFTA, EIC, FSSA	I, BIS & MoEF)
		TEST REPORT		Page No.1 of 1
ISSUED TO	· Mic. Calana Ani	tive Pharma Sciences Ltd,		
		live maima Sciences Ltd, Puduchery - 605 014.		07.07.2022
Cust. Ref ;	SRF Dated : 25.06.2022		T.C No :	CML/22-23/21902 - A
Lab No :	2322739	.00.2022		ceipt : 25.06.2022 commenced On :25.06.2022
		3ore Well Water - 01.	•	ompleted On :04.07,2022
(as stated by	customer)			·····
	TEST	PROTOCOL		RESULTS
Hexane		Instrument Used by (GCMS	Not Detected
Acetone		Instrument Used by	GCMS	Not Detected
Methanol		Instrument Used by	GCMS	Not Detected
				ed and Authorized by P. KAVITHA unical Manager
tion. Unless otherwis s completion date of t environmental testing	e stated the submitted : testing., except in case a related rennant same	results in this test report refer only to the of regulatory samples, which will be retain plos will be discarded - consequent upon	: sample(s) tested and ned for a specific pen completion of testing	is unlawful and offenders will be itable for such sample(s) are retained for 15 days only of as per statutory requirement; while pens . Samples are not drawn by us unless othe . This report is for the exclusive ass of Ch

i

TEST REPORT

- ISSUED TO : M/s. Solara Active Pharma Sciences Ltd. Periyakalapet, Puduchery - 605 014.
- Cust. Ref : SRF Dated . 25.06.2022
- Lab No : 2321743

13

¢

المعر 1979 - 1979 1979 - 1979 - 1979

1

đ

5

13

ŵ

neraza Ilenar Asian Karat

ø

nie Gran Gran

ø

2000 No. 10 No. 10 No. 10

(j)

10.00 2000 11.00 1.00

సు

ار بعری در که رو ک

P

iand San Kan La

۲

ø

ansi Ngco Sing Sing

叅

2

()

and es a Rica Cast

Û

Ö

٢

20%

nor: K_{ut}a **\$**3

Z Ĉ 崳

Sample Description : Test Bore Well Water - 05. (as stated bycustomer)

T.C No : CML/22-23/21906 Date Of Receipt : 25.06.2022 Analysis Commenced On: 25.06.2022

T.C Date : 07.07 2022

Page No.1 of 2

Ø,

٩

yan Kana Kana Kana

\$

ing Sector Sector Sector

. ®

-68

1997 1997 1997

¢;

ø

æ

۲

e

è

\$

1

÷

ŝ

1.00 0.75 0.75

. G G.P

Analysis Completed On : 04.07.2022

TEST	PROTOCOL	RESULTS
Discipline : Chemical		Group : Water
Colour (True Color)	IS: 3025 Part: 4 -1983 (Reaff: 2017)	5 Hazen
pH at 25°C	IS: 3025:Part: 11-1983 (Reaff:2017)	6.89
Conductivity @ 25°C	IS: 3025: Part:14-2013 (Reaff: 2019)	1488 µmhos/cm
Silica as SiO ₂	IS : 3025 Part 35:1988(Reaff:2019)	30.90 mg/l
Total Alkalinity as CaCO ₃	IS: 3025 Part 23-1986 (Reaff. 2019)	352 mg/l
Chloride as Cl	IS: 3025 Part 32-1988 (Reaff. 2019)	249 mg/l
Residual Free Chlorine	IS: 3025 Part 26-1986 (Reaff. 2019)	BDL(DL : 0.1 mg/l)
Magnesium as Mg	IS: 3025 Part 46: 1994 (Reaff: 2019)	56 mg/l
Total Dissolved Solids	IS: 3025 Part 16-1984 (Reaff. 2017)	842 mg/l
Sulphate as SO₄	IS: 3025 Part 24-1986 (Reaff: 2019)	35 mg/l
Fluoride as F	APHA 23 rd Edn.2017-4500-F-D	0.38 mg/l
Hexavalent Chromium as Cr6+	IS: 3025 Part 52:2003 (Reaff : 2019)	BDL (DL:0.03 mg/l)
Sodium as Na	1S: 3025 Part 45:1993 (Reaff : 2019)	204 mg/l
Potassium as K	IS: 3025 Part 45:1993 (Reaff : 2019)	13.3 mg/l
BOD @ 27°C for 3 days	IS 3025 Part 44–1993 (Reaff.2019)	4 mg/l
Chemical Oxygen Demand	IS:3025 Part 58-2006 (Reaff:2017)	24 mg/l
Calcium as Ca	IS: 3025 Part 40:1991 (Reaff: 2019)	99 mg/l
Zinc as Zn	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.05 mg/l)
Total Chromium as Cr	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Copper as Cu	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Cadmium as Cd	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.001 mg/l)
Lead as Pb	IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)

VOTE: Any manufactural distribution, forgety or falsification of the contant or appearance of this document is unlawful and offenders will be liable for legal action. Unless, otherwise stated the minimized results in this test senon refer only to the sample(a) leated and such sample(a) are retained for 15 degs only from the completion date of action is easily in case of regulatory simples, which will be retained for a goodle period as per statety to save of regulatory simples, which will be retained for a goodle period as per statety or retained for 15 degs only from the completion date of action is easily action structure, and as period as per statety or retained for 15 degs only from the completion date of actions will be discarded consequent upon completion of tening. Sources are not drawn by us unless otherwise stated. This document control to reproduce the submitted results the approach of the lactation. This report is for the exclusive use of Chennai Metrox Lab's customer, and a product an occurring results are customer to be used. The control of the container with the exclusive use of Chennai Metrox Lab's customer, and a product an occurring results are container with the exclusive use of Chennai Metrox Lab's customer, and a product on occurring results are container with the exclusive use of Chennai Metrox Lab's customer, and a product of the statemer.

CML: LASZETS 10:

E-mail : test@metto Web : : www.metto	exiab.com -	CML CML CML CML CML CML CML CML	22323163, 22311034 42179490, 42179491
NEIDE	CHEN	INAI METTEX LAB PRIVATI	130000
N		Complex, 83, M.K.N. Road, Guindy, Chenr	
Lab No:2		T.C No: CML/22-23/21906 Dated : 07.07.20	
TEST		PROTOCOL	RESULTS
Selenium as Se		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Arsenic as As		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL.0.005 mg/l)
Mercury as Hg		USEPA 200.8	BDL (DL:0.0005 mg/l)
Nickel as Ni		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Manganese as Mn		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Molybdenum as Mo		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Barium as Ba		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Antimony as Sb		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.003 mg/l)
Silver as Ag		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.003 mg/l)
Note : BDL - Below	Detection L	imit, DL - Detection Limit, APHA - American Public H	lealth Association
		End of Report	ettex Lab Private Limited
			ved and Authorized by ?, KAVITHA Inical Manager
ा एक एक के case of regular त samples will be descripted	fory samples, wh di consequent p manoroud of th	fabilitation of the content or appearance of this document is unlawful import refer only to the sample(s) tested and such sample(s) are rete high, will be relatived for a specific period as per statatory requirement pon completion of testing. Samples are not drawn by us unless othe te laboratory. The report is for the exclusive use of Chennai Mettes, its Conference	to while perishable & environmental resting rela-

veb .www.mett		I METTEX L AB P	RIVATE	^{42179490. 421}	
	Jothi Comple	ex, 83, M.K.N. Road, Gu	iindy, Chenna	ai - 600 032.	
	(Approved/Reco	gnized by APEDA, AGMARK, G	AFTA, EIC, FSS/	AI, BIS & MoEF)	
		<u>TEST REPORT</u>		Page No.1 of 1	
1550ED 10		ve Pharma Sciences Lld, /uduchery - 605 014.		07.07.2022	
A		·	T.C No : Date Of Re		
Cust. Ref :	SRF Dated : 25.0	JO.2022		ommenced On :25.06.2022	
Lab No : 2321743 Sample Description : Test Bor		ore Well Water - 05	÷	completed On :04.07.2022	
(as stated by	customer)	ore weit water - 05.			
	TEST	PROTOCOL		RESULTS	
Hexane		Instrument Used by	GCMS	Not Detected	
Acetone		instrument Used by	GCMS	Not Detected	
Methanol		Instrument Used by	GCMS	Not Detected	
		Marra Marra	10 K	Authorized by AVITHA cal Manager	
han a share a shere a s	ise stated the submitted	results in this fest report refer only to t	ne sample(s) tested an visited for a coordic or	ent is unlawful and offenders will be liable d such sample(s) are retained for 15 days griod as per statutory requirement: while ng. Samples are not drawn by us unless ry. This report is for the exclusive use of the Curtanan	noniya norish

mail : test@mettexlab.com /eb : : www.mettexlab.com			2323163, 22311034 2179490, 42179491
能函 <u>CHE</u>	NNAI METTEX LAB P	RIVATE	LIMITED [®]
Joth	i Complex, 83, M.K.N. Road, Gui	ndy, Chenna	i - 600 032. TC - 5585
	TEST REPORT		Page No.1 of 2
ISSUED TO : M/s. Solar	ra Active Pharma Sciences Ltd,	T.C Date :	07.07.2022
Periyakala	apet, Puduchery - 605 014.	T.C No :	CML/22-23/21907
Cust. Ref : SRF Dated	1 ; 25.06.2022	Date Of Red	ceipt : 25.06.2022
Lab No : 2321744		Analysis Co	ommenced On : 25.06.2022
Sample Description : Ţ (as stated by customer)	est Bore Well Water - 06.	Analysis Co	ompleted On : 04.07.2022
TEST	PROTOCOL		RESULTS
liscipline : Chemical	I	· · · · · · · · · · · · · · · · · · ·	Group : Water
Colour (True Color)	IS: 3025 Part: 4 -1983 (Re	aff: 2017)	5 Hazen
H at 25℃	IS: 3025:Part: 11-1983 (Rea	aff:2017)	7.12
Conductivity @ 25°C	IS: 3025: Part:14-2013 (Rea	ff: 2019)	1457 µmhos/cm
ilica as SiO ₂	IS : 3025 Part 35:1988(Rea	ff:2019)	31.90 mg/l
otal Alkalinity as CaCO ₃	IS: 3025 Part 23-1986 (Rea	ff. 2019)	472 mg/l
hloride as Cl	IS: 3025 Part 32-1988 (Rea	ff. 2019)	243 mg/l
Residual Free Chlorine	IS: 3025 Part 26-1986 (Rea	ff. 2019)	BDL(DL : 0.1 mg/l)
Aagnesium as Mg	IS: 3025 Part 46:1994 (Rea	ff. 2019)	58 mg/l
fotal Dissolved Solids	IS: 3025 Part 16-1984 (Rea	ff. 2017)	816 mg/l
Sulphate as SO₄	IS: 3025 Part 24-1986 (Rea	ff: 2019)	34 mg/l
luoride as F	APHA 23 rd Edn.2017-450	0-F-D	0.32 mg/l
Hexavalent Chromium as Cr	⁶⁺ IS: 3025 Part 52:2003 (Rea	ff : 2019)	BDL (DL:0.03 mg/l)
Sodium as Na	IS: 3025 Part 45:1993 (Rea	ff : 2019)	206 mg/l
Potassium as K	IS: 3025 Part 45:1993 (Rea		12.8 mg/l
BOD @ 27°C for 3 days	IS 3025 Part 441993 (Re:	aff.2019)	4 mg/l
Chemical Oxygen Demand	IS:3025 Part 58-2006 (Rea		24 mg/l
Calcium as Ca	IS: 3025 Part 40:1991 (Rea		96 mg/l
Zinc as Zn	IS: 3025 Part 65:2014(Rea		BDL (DL:0.05 mg/l)
Fotal Chromium as Cr	IS: 3025 Part 65:2014(Rea		BDL (DL:0.02 mg/l)
Copper as Cu Cadmium as Cd	IS: 3025 Part 65:2014(Rea IS: 3025 Part 65:2014(Rea		BDL (DL:0.02 mg/l) BDL (DL:0.001 mg/l)
Laomium as Co Lead as Pb	IS: 3025 Part 65:2014(Rea		BDL (DL:0.005 mg/l)
	10. 3023 Fait 03.2014(102	M	Contd2
wase stated the submitted results in g , except in case of (egulatory sam aut comples will be disearded, conse	jety or fabilitation of the content or appearance of thi this test report refer only to the sample(s) tested and s ples, which will be retined for a great(k period as pe quent upon completion of testing. Samples are not de	uch samplo(s) are re- statutory requirence awa by us unless off	tained for 15 days only from the completion intervalse pensibable & environmental testing vervalse stated. This document cannot be repa
st in full, without prior written appro- greement between Chennet Mettex [val of the laboratory. This repeat is for the exclusive u	a of Chennal Metter	Chab's customer, and is provided in accuration

mail : test@mettex /eb =: www.mettex			22323163, 22311034 42179490, 42179491
ALLER.			
MEL 23	CHENNAI MELI	<u>'Ex lab privat</u>	
A Sector	Jothi Complex, 83, M	K.N. Road, Guindy, Chem	nai - 600 032.
Lab No: 2	2321744 T.C No: CML/22-23	/21907 Dated : 07.07.2022	Page No. 2 of 2
TEST		PROTOCOL	RESULTS
Selenium as Se	IS: 302	5 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Arsenic as As	IS: 302	5 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Mercury as Hg		USEPA 200.8	BDL (DL:0.0005 mg/l)
Nickel as Ni		5 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Manganese as Mn	IS: 302	5 Part 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Molybdenum as Mo		5 Part 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Barium as Ba	······································	5 Part 65:2014(Reaff: 2019)	BDL (DL:0.05 mg/l)
Antimony as Sb		5 Part 65:2014(Reaff: 2019)	BDL (DL:0.003 mg/l)
Silver as Ag		5 Part 65:2014(Reaff: 2019) n Limit, APHA – American Public	BDL (DL:0.005 mg/l)
			Hermen viewed and Authorized by P. KAVITHA chnical Manager
			hurful and offenders will be lipble for least receive - U

	textab.com			• CML • CML • CML • CML • CML • Phone : 044-22323163, 22311 _42179490, 42179	03^{4}
Veb :www.niett		AI METTEX LAB P	RIVATE	6	1947U.
	Jothi Complex, 83, M.K.N. Road, Guindy, Chennal - 600 032. (Approved/Recognized by APEDA, AGMARK, GAFTA, EIC, FSSAI, BIS & MoEF)				
-,,	(rippiorealise			······································	
		TEST REPORT		Page No.1 of 1	
ISSUED TO	: M/s Solaro Ar	tive Pharma Sciences Ltd,	T.C.Date :	07.07.2022	
		Puduchery - 605 014.	T.C No :	CML/22-23/21907 - A	
Cust. Ref : SRF Dated : 25.06.2022			Date Of Re	-	
Lab No :				ommenced On (25.06.2022	
Sample Description : Test E		Bore Well Water - 06.	Analysis C	ompleted On :04.07.2022	
(as stated by	customer)				
	rest	PROTOCOL		RESULTS	
Hexane		instrument Used by	GCMS	Not Detected	
Acetone		Instrument Used by	GCMS	Not Detected	
Methanol		Instrument Used by	GCMS	Not Detected	
		ALC: NO THE REAL PROPERTY OF	Hew Reviewed and P. KA	x Lab Private Limited	
			Technica	al Manager	
OTE: Any unauth	nized alteration, forge jse stated the submitt	CORCENTIS THE TOTAL REPORT FOR THE PARTY OF	tained for a condition	ant is unlawfut and offenders will be hable fr ad such sample(s) are retained for 15 days on artiod as per statutory requirement, while per ino. Samules are not drawn by its unless of	ri-ha
re completion date o	Hesting, except to ca	amples will be discarded consequent upo	on completion of testi	ing. Samples are not drawn by us unless of my. This report is for the exclusive use of C of its Customer.	The

AREA CHEN	NAI METTEX LAB PR	IVATE	LIMITED	
NAL WOLLARD	Complex, 83, M.K.N. Road, Guind			TC - 5589
	TEST REPORT		Page No	1 of 2
ISSUED TO: M/s. Solara A	Active Pharma Sciences Ltd.	T.C Date :	07 07.2022	
	E Duducham, 1605,014			
· · · · · · · ·			CML/22-23/21905	
Cust. Ref : SRF Dated : 2			ceipt : 25.06.2022	
Lab No : 2321742			ommenced On : 25.08	
Sample Description : Tes (as stated by customer)	t Bore Well Water - 04.	Analysis Co	ompleted On : 04.0	17.2022
TEST	PROTOCOL		RESULT	'S
Disciplino : Chemical	······		Group : Water	
Colour (True Color)	IS: 3025 Part. 4 -1983 (Reaff:	2017)	5 Hazen	
pH at 25°C	IS: 3025;Part: 11-1983 (Reaff:	2017)	7.02	
Conductivity @ 25°C	IS: 3025: Part:14-2013 (Reaff:	2019)	1482 µmhos/cm	
Silica as SiO ₂	IS : 3025 Part 35:1988(Reaff:	2019)	32.69 mg/l	
Total Alkalinity as CaCO ₃	1S: 3025 Part 23-1986 (Reaff.	2019)	370 mg/l	
Chloride as Cl	IS: 3025 Part 32-1988 (Reaff.	,	247 mg/l	<u></u>
Residual Free Chlorine	IS: 3025 Part 26-1986 (Reaff.	2019)	BDL(DL : 0.1 mg/l)	
Magnesium as Mg	IS: 3025 Part 46:1994 (Reaff:		61 mg/l	
Total Dissolved Solids	IS: 3025 Part 16-1984 (Reaff.		830 mg/l	
Sulphate as SO ₄	IS: 3025 Part 24-1986 (Reaff:		35 mg/l	
Fluoride as F Hexavaient Chromium as Cr ⁶ '	APHA 23 rd Edn.2017-4500-		0.39 mg/l	
Sodium as Na	IS: 3025 Part 52:2003 (Reaff : IS: 3025 Part 45:1993 (Reaff :		BDL (DL:0.03 mg/l	/
Potassium as K	IS: 3025 Part 45:1993 (Realf :		212 mg/l	
BOD @ 27°C for 3 days	IS 3025 Part 44–1993 (Reaff.	r	12.9 mg/l 4 mg/l	
Chemical Oxygen Demand	IS:3025 Part 58-2006 (Reaff:		26 mg/l	
Calcium as Ca	IS: 3025 Part 40:1991 (Reaff:		95 mg/l	
Zinc as Zn	IS: 3025 Part 65:2014(Reaff:	2019)	BDL (DL:0.05 mg/l))
Total Chromium as Cr	IS: 3025 Part 65:2014(Reaff:	2019)	BDL (DL:0.02 mg/l))
Copper as Cu	IS: 3025 Part 65:2014(Reaff:		BDL (DL:0.02 mg/l	}
Cadmium as Cd	IS: 3025 Part 65:2014(Reaff:	2019)	BDL (DL:0.001 mg	
Lead as Pb	IS: 3025 Part 65:2014(Reaff:	2019)	BDL (DL:0.005 mg	/I)
			Contd	,2
		· 	A. Ch.	
		\mathcal{C}	A martine C	
II.: Any unnumorized efferation, forgery c	in faisibleation of the content or appearance of this dee est report refer only to the sample(s) tested and such	ument is unlawfu	t and offenders will be dable for	r legal action. Mule

⊱mail : test@mettex Veb : : www.mettex			323163, 22311034 179490, 42179491
Meiras	CHENNAI METTE)	(LAB PRIVATE	LIMITED [®]
1650V	Jothi Complex, 83, M.K.N	I. Road, Guindy, Chenna	i - 600 032.
Lab No: 232174	42 T.C No: CML/22-23/2190	5 Dated : 07.07.2022	Page No. 2 of 2
TEST	P	ROTOCOL	RESULTS
Selenium as Se	IS: 3025 Par	t 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Arsenic as As		t 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Mercury as Hg	······	SEPA 200.8	BDL (DL:0.0005 mg/l)
Nickel as Ni	IS: 3025 Par	t 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Manganese as Mn	IS: 3025 Par	t 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Molybdenum as Mo	IS: 3025 Par	t 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Barium as Ba	IS: 3025 Par	t 65:2014(Reaff: 2019)	BDL (DL:0.05 mg/l)
Antimony as Sb	IS: 3025 Par	t 65:2014(Reaff: 2019)	BDL (DL:0.003 mg/l)
Silver as Ag	IS: 3025 Par	t 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Note : BDL - Below	Detection Limit, DL - Detection Lim	it, APHA – American Public He	ealth Association.
		лом F	l and Authorized by 9. KAVITHA nical Manager
nvelse stated the submitted a og 1, dw.ept in dase of regul	results, in this tast repeat rates only to the sim- latory samples, which, will be retained for a sy-	aplets) tested and such sample(s) are rep wellic period as per stateory requisioner Samples are not drawn by us unless oth	d and offenders will be liable for legal action. It ained for 15 days easy from the completion of ht while perisbustic & environmental testina or envise stated. This document currence be reprod Lab's enstemment and is provided in accordurate

	st@mettexl w.metiexk				Phone : 044-22323163, 22 42179490, 42	
		CHENN	AI METTEX LAB P	PRIVATE	LIMITED	
~	J	Jothi Com	plex, 83, M.K.N. Road, G	uindy, Chenna	ui - 600 032.	
	(/	Approved/Re	cognized by APEDA. AGMARK, C	GAFTA, EIC, I ⁻ SSA	M, BIS & MoEF)	
			TEST REPORT		Page No.1 of 1	
ISSU	ED TO: M	Vs. Solara A	ctive Pharma Sciences Ltd,	T.C. Data		
			, Puduchery - 605 014		07.07.2022	
	SF	RF Dated : 2	5.06 2022	T.C No : Date Of Re	CML/22-23/21905 - A	
Lab No		321742			ommenced On :25.06.2022	
Sample			Bore Well Water - 04.		ompleted On :04.07.2022	
(as stat	ted by cus	tomer)	Dore then trater - 04.			
	TEST	1	PROTOCOL		RESULTS	1
Нехап	ie		Instrument Used by (Instrument Used by GCMS Not		
Acetor	Acetone Instrument Us		Instrument Used by (GCMS	Not Detected	
Metha	nol		Instrument Used by (End of Repar	GCMS	Not Detected	
			Jan S	Ρ.	Lumentation ed and Authorized by KAVITHA ical Manager	
	authorized alt	teration forgers	or falsification of the content or armeers	nce of this document	is unlawful and offenders will be liable uch sample(s) are retained for 15 days of	for Jeg

Smail : test@mette Veb : : www.mette	exlab.com		rnone : 044-2 4	2323163, 22311034 2179490, 42179491	STUTTUR SON
	CHENN	AI METTEX LAB	PRIVATE	LIMITED®	- Sie
	Jothi Corr	plex, 83, M.K.N. Road, C	Guindy, Chenna	ai - 600 032.	TC - 5589
		TEST REPORT		Page No.1	of 2
ISSUED TO : M	s. Solara Activ	e Pharma Sciences Ltd,	T.C Date :	07.07.2022	
Po	eriyakalapet, Pu	duchery - 605 014.	T.C No :	CML/22-23/21903	
Cust. Ref : SF	RF Dated 125.06	5.2022	Date Of Red	ceipt : 25.06.2022	
Lab No : 23	21740			ommenced On :25.06.	2022
	on : Test Bo	re Well Water - 02.		ompleted On :04.07.2	
TEST		PROTOCOL		RESULTS	;
iscipline : Chemic	al Group : Water		м	•	
olour (True)		IS: 3025 Part: 4 -1983 (F	Reaff: 2017)	5 Hazen	
H at 25°C		IS: 3025:Part: 11-1983 (F	Reaff:2017)	7.05	
onductivity @ 25°C		IS: 3025: Part:14-2013 (R	eaff: 2019)	1472 µmhos/cm	
ilica as SiO ₂		IS : 3025 Part 35:1988(R	eaff:2019)	38.26 mg/l	
otal Alkalinity as Ca	ICO3	IS: 3025 Part 23-1986 (R	eaff. 2019)	380 mg/l	
hloride as Cl		IS: 3025 Part 32-1988 (R	eaff. 2019)	255 mg/l	
esidual Free Chlori	ne	IS: 3025 Part 26-1986 (R	eaff. 2019)	BDL(DL : 0.1 mg/l)	
tagnesium as Mg		IS: 3025 Part 46:1994 (R	eaff: 2019)	58.3 mg/l	
otal Dissolved Solid	ls	IS: 3025 Part 16-1984 (R	eaff. 2017)	852 mg/l	
ulphate as SO ₄		IS: 3025 Part 24-1986 (R	eaff: 2019)	35 mg/l	
luoride as F		APHA 23 rd Edn.2017-4	500-F-D	0.35 mg/l	
exavalent Chromiu	m as Cr ⁶⁺	IS: 3025 Part 52:2003 (Re	eaff : 2019)	BDL (DL:0.03 mg/l)	
odium as Na		IS: 3025 Part 45:1993 (Re	eaff : 2019)	205 mg/l	
otassium as K		IS: 3025 Part 45:1993 (Re	eaff : 2019)	12.6 mg/l	
OD @ 27°C for 3 d	ays	IS 3025 Part 44–1993 (R	eaff.2019)	4 mg/l	
hemical Oxygen De	mand	IS:3025 Part 58-2006 (Re		26 mg/l	
alcium as Ca		IS: 3025 Part 40:1991 (Re		102.6 mg/l	
inc as Zn	······································	IS. 3025 Part 65:2014(Re		BDL (DL:0.05 mg/l)	
otal Chromium as C	،۲ ———	IS: 3025 Part 65:2014(Re		BDL (DL:0.02 mg/l)	
opper as Cu		IS: 3025 Part 65;2014(Re		BDL (DL:0.02 mg/l)	
admium as Cd 		IS: 3025 Part 65:2014(Re	·····	BDL (DL.0.001 mg/l)	
		IS: 3025 Part 65:2014(Re	eaff: 2019)	BDL (DL:0.005 mg/l)	-
			Hern	a	
An an anger allow a track			- 	Contd	
 except in case of regulation of the second se	nory samples, which is considered upon	cation of the content or approximate of the ort refer only to the seculated tested and will be retained for a specific period as p completion of testing. Samples are not content. This reveals the in-	er slatutory requirement	ned for 15 days only treas the : while peristrable & environm	neren pretinen dare bermal sestima rela
na 621, technolit prior write rementi fotosecci Chennal	en approvel of the lef Methos Leb and its C	compation of reality - compare are not a poratory. This report is for the exclusive to ustomer.	use of Channai Mestex [ab's customer, and is provided	tus accentatore a


⊡mail : test@mett Veb : : www.meit			Phone: 044-22323163, 22311034 42179490, 42179491				
(Hias	CHENNAI	METTEX	LAB	PRIVATE			
	Jothi Comple	x. 83, M.K.N.	Road, G	uindy, Chenna	· 600 032.	1C - 5589	
Lab No: 2321 EST	740 T.C No: CML		Dated :	07.07.2022	Page No	5. 2 of 2 SULTS	
						. <u></u>	
Selenium as Se Arsenic as As		IS: 3025 Part (IS: 3025 Part (BDL (DL:0.00 BDL (DL:0.00		
Mercury as Hg			EPA 200.8		BDL (DL:0.00		
Nickel as Ni		IS: 3025 Part (· ··· · ··· ·	BDL (DL:0.00		
Manganese as Mn		IS: 3025 Part	65:2014(R	eaff. 2019)	BDL (DL:0.02	mg/l)	
Molybdenum as M	o	1S: 3025 Part (65:2014(R	eaff: 2019)	BDL (DL:0.02	mg/i)	
Barium as Ba		iS: 3025 Part			BDL (DL:0.05		
Antimony as Sb	.	IS: 3025 Part			BDL (DL:0.00		
Silver as Ag	w Detection Limit, DL	IS: 3025 Part			BDL (DL:0.00		
				P.	ed and Authorized KAVITHA ical Manager	by	
	teration, fongere oc talsificat rå results in irds test report				aided for 15 days only		

	ttexlab.com texlab.com			Phone : 044-22323163, 22311 42179490, 42179	
MERS	CHENN	AI METTEX LAB P	RIVATE	LIMITED	
~~~~~	Jothi Complex, 83, M.K.N. Road, Guindy, Chennai - 600 032.				
	(Approved/Red	ognized by APEDA, AGMARK, G	AFTA, EIC, FSSA	I, BIS & MoEF)	
		TEST REPORT		Page No.1 of 1	
ISSUED TO	): M/s. Solara A	ctive Pharma Sciences Ltd,	T C Data		
		, Puduchery - 605 014.	T.C No :	07.07.2022	
Cust. Ref :	SRF Dated : 2	5.06.2022	Date Of Re	CML/22-23/21903 - A ceipt : 25.06.2022	
Lab No :	2321740			ommenced On :25.06.2022	
Sample Desc	cription : Test	Bore Well Water - 02.		ompleted On :04.07.2022	
(as stated by	(customer)				
	TEST	PROTOCOL		RESULTS	
Hexane		Instrument Used by (	BCMS	Not Detected	
Acetone	Instrument Used b		GCMS	Not Detected	
Methanol	bl Instrument Used b		GCMS	Not Detected	
			Ρ.	ed and Authorized by KAVITHA lical Manager	

-mail:test@me /eb:www.me				Phone : 044-22323163, 2231 42179490, 4217
	CHENN	AI METTEX L <mark>ab</mark> P	RIVATE	LIMITED
	Jothi Com	plex, 83, M.K.N. Road, G	uindv. Chenna	i - 600 032
	the second s	cognized by APEDA, AGMARK, G		
			······································	
		TEST REPORT		Page No.1 of 1
ISSUED TO	·: M/s -Solara Ar	tive Pharma Sciences Ltd,	T.C Date ;	07 07 0000
		Puduchery - 605 014.	T.C No :	
Cust. Ref :	SRF Dated : 25.06.2022			CML/22-23/21904 - A ceipt : 25.06.2022
Lab No ::				ommenced On :25.06.2022
Sample Desc		Bore Well Water - 03.		ompleted On :04.07.2022
(as stated by	customer)			
	TEST	PROTOCOL		RESULTS
Hexane	<u></u>	Instrument Used by 0	GCMS	Not Detected
Acetone		Instrument Used by (	GCMS	Not Detected
Methanol		Instrument Used by ( End of Report	GCMS	Not Detected
		E		Herrich dans Authorized by
				P. KAVITHA nical Manager
I. UTRESS CREATUR	SE MALCO THE SUDMATICET	sesults in this test tenori refer only to the	-sample(c) (østød and s	is unlawfut and offenders will be hable for uch sample(s) are retained for 15 days cal
n concess category: propletion date of	testing except in case	results in this test report refer only to the	sample(s) tested and s	is unlawfut and offenders will be hable for uch sample(s) are retained for 15 days only at as per statutory requirement; while per Samples are not draton by us unless of This report is for the exclusive use of Cl

E-mail : test@mettexta Web : : www.mettexta	b.com	Phone : 044-22 42	2323163.22311034 2179490.42179491	ALL COLORIDA
	HENNAI METTEX LAI	<u>s private</u>	LIMITED®	
	Jothi Complex, 83, M.K.N. Road,	Guindy, Chenna	i - 600 032.	ZZ-5589
				····
	TEST REPORT		Page No 1 of	12
ISSUED TO : M/s	Solara Active Pharma Sciences Ltd,	T.C Date :	07.07.2022	
Periya	akalapet, Puduchery - 605 014.	T.C No :	CML/22-23/21904	
Cust. Ref : SRF [	Dated . 25.06.2022	Date Of Rec	eipt : 25 06.2022	
Lab No : 23217	41		mmenced On : 25.06.20	122
Sample Description (as stated by custom	: Test Bore Well Water - 03. er)		mpleted On : 04.07.2	
TEST	PROTOCOL		RESULTS	
Discipline : Chemical			Group : Water	
Colour (True Color)	IS: 3025 Part: 4 -1983	(Reaff: 2017)	5 Hazen	
pH at 25°C	IS: 3025:Part: 11-1983	(Reaff:2017)	6.96	
Conductivity @ 25°C	IS: 3025: Part:14-2013 (	Reaff: 2019)	1486 µmhos/cm	<b></b>
Silica as SiO ₂	IS : 3025 Part 35:1988(	Reaff:2019)	37.48 mg/l	
Total Alkalinity as CaCO;	IS: 3025 Part 23-1986 (I	Reaff. 2019)	360 mg/l	
Chloride as Ci	IS: 3025 Part 32-1988 (I	Reaff. 2019)	245 mg/l	
Residual Free Chlorine	IS: 3025 Part 26-1986 (I	Reaff. 2019)	BDL(DL : 0.1 mg/l)	
Magnesium as Mg	IS: 3025 Part 46:1994 (I	Reaff: 2019)	56 mg/l	
Total Dissolved Solids	IS: 3025 Part 16-1984 (F		840 mg/l	
Sulphate as SO₄	IS: 3025 Part 24-1986 (F		34 mg/i	
Fluoride as F	APHA 23 rd Edn.2017-		0.35 mg/l	
Hexavalent Chromium as Sodium as Na			BDL (DL:0.03 mg/l)	
Potassium as K	IS: 3025 Part 45:1993 (R		206 mg/i	
BOD @ 27°C for 3 days	IS: 3025 Part 45:1993 (R		12.1 mg/	
Chemical Oxygen Demar	IS 3025 Part 44-1993 (I		4 mg/l	·
Calcium as Ca			23 mg/i	
Zinc as Zn	IS: 3025 Part 40:1991 (F IS: 3025 Part 65:2014(R	······································	96 mg/l	
fotal Chromium as Cr	IS: 3025 Part 65:2014(R		BDL (DL:0.05 mg/l)	
Copper as Cu	IS: 3025 Part 65:2014(R		BDL (DL:0.02 mg/l) BDL (DL:0.02 mg/l)	-'
Cadmium às Cd	IS: 3025 Part 65:2014(R		BDL (DL:0.02 mg/l) BDL (DL:0.001 mg/l)	
.ead as Pb	IS. 3025 Part 65:2014(R		BDL (DL:0.005 mg/l)	·
			SDE (DE.0.003 mg/l)	
		Am	. Ch	
CONTRACTOR CONTRACTOR CONTRACTOR OF DECOMPANY AND DECOMPANY OF DECOMPANY AND AND AND AND AND AND DECOMPANY LODGED CONTRACTOR DECOMPANY AND	organy or taking auron of the stantism or approximation of it in this task report refers only in the susciplotic tested and ministries which will be retained for a specific period as bounders which will be retained for a specific period as bounders upon completion of testing. Somples are not evolved at the laterativity. This report is for the exclusive x Lab and its Casterner.	oscol simplesi de tenne per solutory requirement: v drawn by na onless otherwi use of Cheomai Mengy Est	d for 20 days only from the comp falle periotiable & anvienmental se stated. This document connect (s customer, and is provided in an	plotan ang st 1950 ang sebaga ber synadiwor 1983 ang sebaga

E-mail : test@mette Web : www.mette			323163, 22311034 179490, 42179491
( ales		METTEX LAB PRIVATE	
	Jothi Comple	ex, 83, M.K.N. Road, Guindy, Chennai	- 600 032. TC - 5589
Lab No: 2	2321741 T.C No:	CML/22-23/21904 Dated : 07.07.2022	Page No. 2 of 2
TEST		PROTOCOL	RESULTS
Selenium as Se		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Arsenic as As		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Mercury as Hg		USEPA 200.8	BDL (DL:0.0005 mg/l)
Nickel as Ni		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Manganese as Mn		IS: 3025 Part 65:2014(Reaff; 2019)	BDL (DL:0.02 mg/l)
Molybdenum as Mo		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.02 mg/l)
Barium as Ba		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.05 mg/l)
Antimony as Sb		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.003 mg/i)
Silver as Ag		IS: 3025 Part 65:2014(Reaff: 2019)	BDL (DL:0.005 mg/l)
Note : BDL - Below	Detection Limit, DL	- Detection Limit, APHA - American Public Hea	alth Association.
			AVITHA cai Manager
ng - except in case of regal nont samples will be discard pd in fuil, webcat onco writ	atory samples, which with atory samples, which with kell consequent usion corr	on of the content to appearance of the document is uslawful a refer only to the sample's tested and such sample's are retain be retained for a specific period as per statutory requirement; retetion of testing. Samples are not drawn by us unless other tere. This report is for the exclusive use of Chesnai Metres 1.	red for 15 days ordy from the completion data while perishable & environmental testing relations and the state of the sta



CML/LAB/F/510/

### ENERGY AUDIT REPORT

at

# SOLARA ACTIVE PHARMA SCIENCES LTD, PONDY

Prepared by



# **GSH UTILITIES SERVICES PVT LTD**

### CHENNAI

JULY 2022

### CONTENTS

No	Chapter	Page No
	ACKNOWLEDGEMENT	3
	DISCLAIMER	5
	EXECUTIVE SUMMARY	7
1	Plant & Production Process - A Brief	15
2	Energy Use Pattern	18
3	Detailed Energy Audit : Methodology Adopted	22
4	Energy Consumption & Cost Incurred - A Detailing	28
5	Performance Study on Thermal Utilities	40
6	Electrical Distribution System : An Overview	81
7	Electrical Measurements on Motors - An Analysis	92
8	Performance Study on Electrical Utilities	99
9	Performance Study on Cooling Towers + Associated Pumps	111
10	Performance Study on Chillers	124
11	Energy Conservation Proposals	153
12	Performance Centric Proposals	194
13	Consolidation and Conclusion	201
14	Thermography Study Outcome	207
15	List of Instruments Used	235

### ACKNOWLEDGEMENT

We wish to place on record our thanks to the management of **Solara Active Pharma Sciences Ltd,** for giving us the opportunity to conduct a **Detailed Energy Audit** (**DEA**) of the utilities at their production facility at Puducherry.

#### We extend our wholehearted thanks to

1)	Mr. M. Mohan	:	Chief Operations Officer
2)	Mr. P.V Shankar	:	CAPEX - LEAD
3)	Mr. R. Ramesh	:	GM - EHS
4)	Mr. Jothi Subramaniyam	:	GM - Engg

Our thanks are due to

1)	Mr. S. Raj Kumar	:	AGM : Utilities
2)	Mr. A. Seenuvasan	:	AGM : Tech. Services
3)	Mr. S. Kaliraman	:	Sr. Manager : Utilities
4)	Mr. N. Arunkumar	:	Mgr. Project : Electrical

and other concerned technical personnel including Mr G Rajesh Kumar, Mr. K Aravindan (Sr Executives). et al for all their support in making this DEA assignment a success

The excellent rapport, unstinted cooperation and clear understanding shown by the concerned personnel are of great help to us in carrying out and completing this study successfully. We are pleased to record our appreciation for the same.

The energy conservation schemes identified and proposed in this report - when implemented - are expected to bring in lasting benefits (savings) in terms of energy as well as cost to the management. We are privileged to submit this "Comprehensive Energy Audit Report" to the management of Solara Active Pharma Sciences Ltd, Puducherry and wish them all success in the implementation of ENCON schemes.

Any missing of names in the acknowledgement is purely unintentional.

### Plant Address:

Solara Active Pharma Sciences Ltd, Mathur Road, Periyakalapet, Puducherry – 605 014 Email : ramesh.ramasamy@solara.co.in Mobile : 95784 22252

July 2022

Dr R SETHUMADHAVAN *CEA : 4980 AEA : 0315* Energy Audit Team Leader GSH Utilities Services Pvt Ltd Gopalapuram, Chennai - 600 086 Phone: 94 44 45 46 25 Email: <u>rsm@gshgroup.com</u>

### DISCLAIMER

In line with our methodology for carrying out energy / cost reduction studies, our key findings and recommendations proposed in this report are based on the data made available to us, energy parameters observed on the site and discussions held with the key / relevant personnel at the site.

The observations made in this report are only an indication on the performance of the facility based on our assessment and should not be construed as a comment on the functioning of the facility.

Details presented in this report are based on information collected from the site personnel and observation of energy parameters during the visit and therefore the findings of this report are valid as on the date of visit and period of study at the site.

It is sincerely believed that the observations made by us represent the normal working at site and hence this report stands for its technical content.

We have exercised all reasonable skill, care, and diligence in carrying out the study. This report is not deemed to be of any undertaking, warranty, or certificate.

It should also be noted that - though the equipment / technology of many Indian or foreign manufacturers / suppliers, installed at the site have been analysed in this report - there is no intention on our part to comment positively or adversely on the capabilities of these suppliers or their equipment / technology. The outcome is purely based on the data / parameters recorded at that point of time at the site.

The name of technology or equipment mentioned in this report belongs to the respective suppliers.

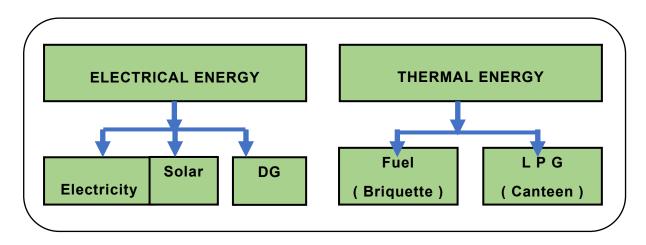
It is emphasized here that the economics of the proposals presented in this report are indicative only and intend to provide the user an overview on the likely investment requirement.

Of course, efforts were made to project a reasonable and real time cost only in our proposals. However, this can vary at the time of implementation due to various internal / external factors that may come into play.

Further, it may be noted that the capital costs mentioned in the report - towards evaluation of payback analysis - are budgetary only. No provision has been made for cost involvement towards Detailed Design, Project Management, Site Management, Contract Supervision, Site Commissioning, balancing of any work associated with "bedding in" of plant or equipment or adjustment of settings, levels etc., as they go beyond the scope of the Audit.

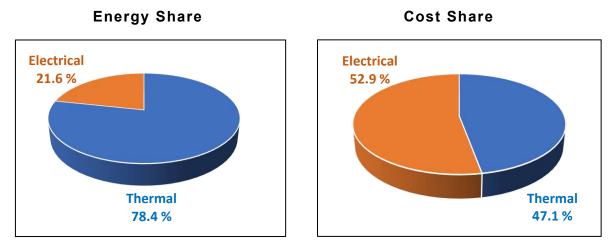
Hence, it is advised that the cost of implementation shall be ascertained / confirmed by the internal project team prior to committing the expenditure. This is very much emphasized where capital expenditure involved is substantial.

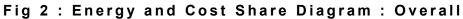
In short, the management is advised to carry out their own financial analysis / due diligence prior to implementation.


# EXECUTIVE SUMMARY

# 1 BACKGROUND

- Solara Active Pharma Sciences Ltd (Formerly Strides Shasun Ltd) had set up its pharma products manufacturing unit at Puducherry in the year 1986. This facility is one of largest manufacturing facilities of Ibuprofen and its derivatives in India.
- Solara Pharma has 6 API manufacturing facilities in India located at Ambernath (Maharashtra), Cuddalore (TN), Mangaluru (Karnataka), Puducherry (UT), Mysuru (Karnataka) and Vizag (AP).
- As far as the facilities at Puducherry is concerned, there are about 140 reactors in the plant that use various utility sources like Chilled Water, Brine Solution, Process Water
   Steam, Compressed Air, Hot Thermic Fluid etc., for production of Ibuprofen

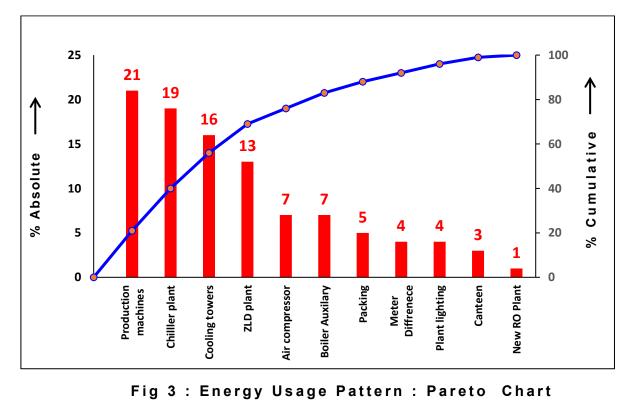

# 2 ENERGY SOURCING & COST INCURRED


- This Pharma unit is an energy intensive one consuming both electrical and thermal energy in ample quantities.
- Energy sourcing protocol of this plant is as below : (Fig 1)



# Fig 1 : Energy Sourcing Protocol

The present energy and cost share pattern of the plant is shown in Fig 2






On an average, the plant spends ₹ 31 crores / y on energy sourcing alone and the split up in terms of electrical & thermal is in the ratio 53:47

#### **ENERGY CONSUMPTION** 3

- The thermal energy is used in the boiler for steam / hot thermic oil generation
- Electricity is used for the operation of all rotaries and non rotary electrical gadgets.
- The plant wise energy intensiveness is depicted in Fig 3



## 4 EMISSIONS RELEASED

It has been estimated - based on the energy use figures - that this plant had released
 CO₂ to an extent of **25 000 tons / y**. This is the carbon footprint of this plant

# 5 SUMMATION OF AUDIT FINDINGS

- A Comprehensive Energy Assessment of all Utilities (both thermal & electrical) using appropriate and sophisticated instruments was conducted for a period of 4 days at the site and that had indicated the existence of ample scope for energy conservation in the utilities.
- Fourteen (14) proposals have been identified as energy cum cost conservation schemes - based on our study - and are listed below in the form of a Table. These proposals - in addition - are also grouped as per the investment required and presented facilitating the management to take an appropriate techno economic informed decision.
  - The overall anticipated savings are indicated in the Table 1

ECM No	Energy Conservation Proposals	Cost Savings	Investment	Payback Period	Page No
		₹/y	₹	Months	NO
	I) THI	ERMAL			
	Strategic Co - Firing of sized wood (				
1	Casuarina) with conventional Agro -	58 00 000	Nil	Immediate	154
	Briquettes in the Process Boiler as a measure				
	of cost conservation				
	Recovery of condensate from the Steam				
2	Traps that are open to ambient and have no	3 16 386	8 00 000	30	157
	collection mechanism				
	Reducing the Thermal Energy Loss by				
	redoing the insulation work afresh in				
3	identified locations that have either damaged	25 92 800	20 00 000	9	159
	insulation / peeled off insulation exposing				
	bare surface				

# Table 1 : Energy cum Cost Conservation Proposals - Utility wise

ECM	Energy Conservation Proposals	Cost Savings	Investment	Payback Period	Page
No		₹/y	₹	Months	No
	II) TRANSFORME	R + POWE	RHOUSE		
4	Improvement of power factor by rectifying the non- operational / failed Capacitor Banks in order to save on the energy cost payable to Puducherry Electricity Dept	21 42 800	15 00 000	9	154
5	Construction of additional Powerhouse near the Boiler Plant with a view to i) contain the excessive load experienced by the present Powerhouse ii) reduce the distribution losses occurring in power transmission to ZLD plant	48 79 000	1 50 00 000	36	167
	III) CH	ILLERS			
6	Reducing the <b>Cooling Energy Loss</b> by redoing the insulation work afresh in identified locations that have either Damaged Insulation / Peeled Off insulation exposing bare surface	3 00 288	1 50 000	6	169
7	<ul> <li>i) Fitment of Variable Frequency Drive to Primary Pumps &amp;</li> <li>ii) Installation of in - line Condenser Water Circulation Pump in the Chiller dedicated for Aldehyde Plant for the sake of Performance Improvement and Energy Usage Optimisation</li> </ul>	25 84 000	22 00 000	10	172
8	<ul> <li>Energy optimization in the operation of Chiller</li> <li>System dedicated to Pharma Plant by way of adoption of</li> <li>i) VFD operation to the primary brine circulation pump</li> <li>ii) dedicated in - line condenser pump for this chiller</li> </ul>	33 18 400	22 00 000	8	177
9	<ul> <li>Performance improvement of chiller of IBU plant through adoption of the below - listed measures :</li> <li>i) VFD operation to the primary brine circulation pump</li> <li>ii) dedicated in - line condenser pump for this chiller</li> </ul>	27 20 000	22 00 000	10	180

ECM No	Energy Conservation Proposals	Cost Savings	Investment	Payback Period	Page No			
		₹/y	₹	Months	INO			
10	Energy Optimization measures proposed in I P C A Chiller operation	25 84 000	20 00 000	10	183			
	IV) COOLI	NG TOWER	٤					
11	Installation of new Energy Efficient , Low Approach Cooling Tower replacing the existing 2000 TR Utility Cooling Tower for the sake of Energy Conservation	10 05 312	20 00 000	24	186			
	V) AIR COMPRESSORS							
12	Pressure drop reduction in Compressor Air generation Location	9 16 300	2 00 000	< 3	188			
<ul> <li>Energy optimization through the use of IoT</li> <li>monitoring system in the Compressed Air system Circuit</li> </ul>		5 23 600	5 00 000	< 12	190			
	VI) ILLUMINATION							
14Replacementofexistingconventional14luminaires with appropriate energy efficient LEDlampsforthesakeofEnergyConservation		2 48 200	2 50 000	12	192			
	Total	2 99 31 086	3 10 00 000	< 13				

The management - while encouraged to discuss the schemes with the auditors - is requested to take steps to achieve the objective of this assignment viz, the energy and thereby cost conservation.

The overall anticipated savings computed is close to ₹ 3.0 crores / y with an onetime investment of ₹ 3.1 crores which shall be paid back in about 13 months.

The Energy cum Cost Conservation Proposals - sorted in the ascending / increasing order of investment - are provided in the Table below for easy reference.

	ECM		Cost	Investment	Payback
No	No	Energy Conservation Proposals	Savings ₹ / y	₹	Period Months
		Strategic Co - Firing of sized wood	<b>«/y</b>	۲	wonths
1	1	Strategic Co - Firing of sized wood (Casuarina) with conventional Agro-Briquettes in the process boiler as a cost conservation measure	58 00 000	Nil	Immediate
2	4	Reducing the cooling energy loss by redoing the insulation work afresh in identified locations that have either Damaged Insulation / Peeled Off insulation exposing bare surface	3 00 288	1 50 000	6
3	12	Pressure drop reduction in Compressor Air generation location	9 16 300	2 00 000	< 3
4	14	Replacement of existing conventional luminaries with appropriate energy efficient LED lamps for the sake of Energy Conservation	2 48 200	2 50 000	12
5	13	Energy optimization through the use of IoT monitoring system in the Compressed Air system circuit	5 23 600	5 00 000	< 12
6	2	Recovery of Condensate from the Steam Traps that are open to ambient and have no collection mechanism	3 16 386	8 00 000	30
7	5	Improvement of power factor by Rectifying the non- operational / failed Capacitor Banks in order to save on the energy cost payable to PED	21 42 800	15 00 000	9
8	3	Reducing the Thermal Energy Loss by redoing the insulation work afresh in identified locations that have either damaged Insulation / Peeled Off insulation exposing bare surface	25 92 800	20 00 000	9
9	10	Energy optimization measures proposed in IPCA chiller operation	25 84 000	20 00 000	10
10	11	Installation of new energy efficient , low approach cooling tower replacing the existing 2000 TR Utility Cooling Tower for the sake of energy conservation	10 05 312	20 00 000	24
11	7	<ul> <li>i) Fitment of Variable Frequency Drive to Primary Pumps &amp;</li> <li>ii) Installation of dedicated Condenser Water Circulation Pump in the chiller dedicated for Aldehyde Plant for the sake of performance improvement and energy usage optimisation</li> </ul>	25 84 000	22 00 000	10

# Table 2 : Energy cum Cost Conservation Proposals : Investment wise

No	ECM No	Energy Conservation Proposals		Investment ₹	Payback Period Months		
12	pump ii) dedicated in - line Condenser Pump for this chiller		33 18 400	22 00 000	8		
13	9	<ul> <li>Performance improvement of chiller of IBU plant</li> <li>through adoption of the listed- below measures</li> <li>i) VFD operation to the primary brine circulation pump</li> <li>ii) Dedicated in-line Condenser Pump for this chiller</li> </ul>	27 20 000	22 00 000	10		
<ul> <li>14</li> <li>6</li> <li>Construction of additional Powerhouse near the Boiler Plant with a view to         <ol> <li>i) Contain the excessive load experienced by the present Powerhouse</li> <li>ii) Reduce the distribution losses occurring in power transmission to ZLD plant</li> </ol> </li> </ul>		48 79 000	1 50 00 000	36			
	Total         2 99 31 086         3 10 00 000						

Summary of cost savings computed is as below :

Table	3	:	Summary	of	Cost	Savings
-------	---	---	---------	----	------	---------

No	Details	Savings ₹/y	No of Proposals
А	Savings - without investment	58 00 000	1
В	Savings - with investment	2 41 31 086	13
	Total	2 99 31 086	14
С	Investment Required (₹)	3 10 00 000	-
D	Payback Period (Months)	<13	-

• Further, Three Performance Centric Proposals (PCPs) have also been identified which are presented below :

No	Description					
1	Installation of 2 Way Valves in place of existing 3 Way Valves in identified Air Handling Units					
2	Installation of Water Cooled VRF Condenser Unit for Microbiology Lab DX Unit					
3	Replacement of existing Men's Urinal with Waterless Urinal					

# Table 4 : Performance Centric Proposals

- The Performance Centric Proposals too are sure to bring in enhanced productivity and thereby profit.
- The management of Solara while encouraged to discuss the schemes with the auditors is requested to take steps to achieve the objective of this assignment viz the energy and thereby cost conservation
- GSH.- USPL can assist SAPSL in the implementation of those schemes by offering complete technical support.

# **1** PLANT & PRODUCTION PROCESS - A BRIEF

#### 1.1 PREAMBLE

- Solara Active Pharma Sciences Ltd (formerly Strides Shasun Ltd) was established in the year 1976 with the organization name Shasun Pharmaceuticals Ltd at Chennai
- In the year 1986, the firm had set up its plant at Puducherry for manufacturing Ibuprofen and its derivatives (Therapeutic Category: Non – Steroidal Anti inflammatory drug)
- This facility is one of the largest manufacturers of Ibuprofen and is approved by
   National & International Regulatory Authorities
- This site has dedicated facilities for the manufacturing of Ibuprofen intermediates, Ibuprofen A P I, Ibuprofen derivatives and a facility for manufacturing new products
- Solara Active Pharma Sciences Ltd is a young, entrepreneurial and customer oriented API manufacturer and headquartered at Bengaluru
- It is in the business of pharma product manufacturing for the past 30 years and the origin of this can be traced to the API expertise of Strides Shasun Ltd and the technical know low of human API business to Sequent Scientific Ltd.
- Solara has 6 API manufacturing facilities, and the locations are as below :
  - (i) Ambernath : Maharashtra
  - (ii) Cuddalore : Tamilnadu
  - (iii) Mangaluru : Karnataka
  - (iv) Puducherry : Union Territory
  - (v) Mysuru : Karnataka
  - (vi) Vizag : Andhra Pradesh
  - The turn over of the company is close to ₹ 1600 crores as of the FY 21 22

# 1.2 SOLARA PLANT AT PUDUCHERRY: A BRIEF

- The major product of this manufacturing facility is "Ibuprofen" a known and very effective pain killer
- The plant has received "Energy Efficiency Award" in recognition of their continued energy conservation / efficiency related activities.
- The plant has the following International Certifications in EHS
  - ► ISO 14001 2015 : Environmental Management System
  - > ISO 45001 2018 : Occupational Health & Safety Management System

# 1.3 PROCESS FLOW CHART

- The plant has various process flows starting with IBU derivatives and ending with the final product Ibuprofen
- The simplified process chart is given below :

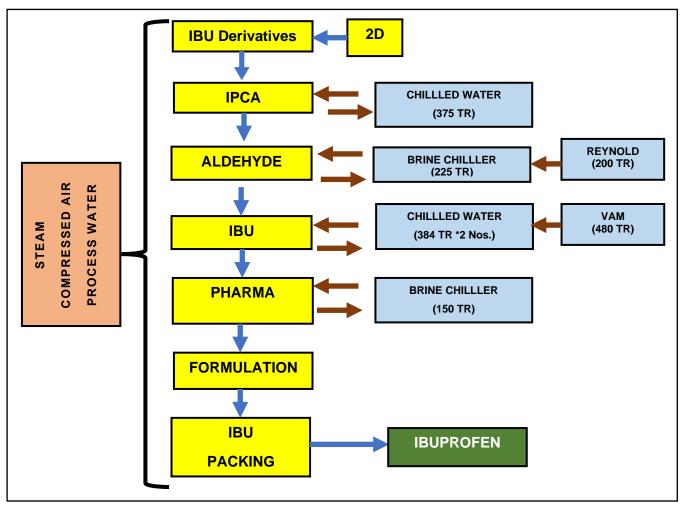



Fig 1.1 : Process Flow Chart : A Simplified Version

There are about 140 reactors in the plant that use various utility sources like chilled water, brine water, process water, steam, compressed air, hot fluid, etc., for the production of ibuprofen

#### **1.4 STUDY ENABLER**

SAPSL has been segregated into the below cited zones - for the sake of easy & effective analysis - and thereupon energy auditing was carried out

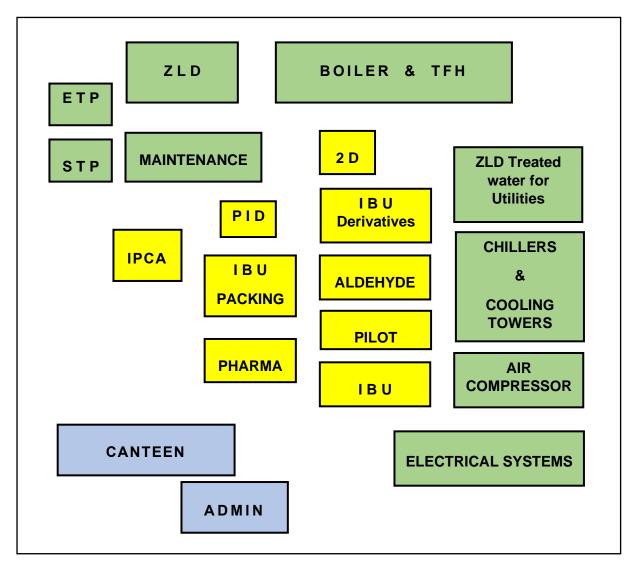



Fig 1.2: Plant Layout with Zone Segregation

The methodology adopted towards carrying out detailed energy audit is outlined in the forthcoming Chapter : 3



# ENERGY USE PATTERN

#### 2.1 PREAMBLE

- This production facility being an energy intensive one consumes both electrical and thermal energy in ample quantities
- Electricity the energy source for all rotary and non rotary electrical gadgets is drawn from PED and to an insignificant extent from in house solar plant.
- DG Sets supply power during power outage period and is quite limited in quantity.
- The thermal energy demand is met by burning agro briquettes in processes boilers towards supply of the steam. The agro briquettes - the environment friendly fuel - is procured locally and the major ingredient is saw dust.
- The GCV of the agro briquettes hovered around 4000 kcal / kg
- The energy sourcing protocol is shown below in Fig 2.1 :

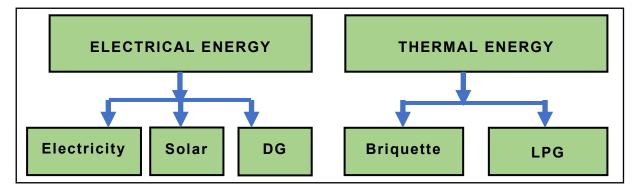



Fig 2.1 : Energy Sourcing Protocol

# 2.2 CONSUMPTION : OVERALL

• The various energy inputs combined with their annual consumption and contribution in the plant's overall energy basket is summarised below in Table 2.1

No	Energy Source	UoM	Quantity	Energy Equivalent MToE	%
1	Thermal (Agro Briquettes)	tons	21 170	8045	78.7
2	Electricity	kWh	2 41 07 791	2031	19.9
3	HSD	lit	1 38 343	141	1.4

Note : LPG is used in the Canteen for cooking purpose and not considered in the above categorization that goes for production purposes

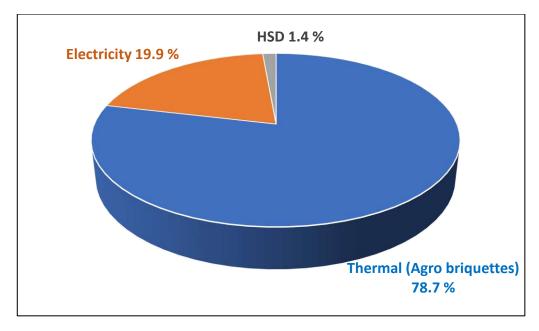



Fig 2.2 Energy Source : Share Diagram

• Steam, Thermic Heat, and Electricity are 3 forms of secondary energy consumed across the process and utility areas

# 2.3 USAGE PATTERN

• Electricity consumption profile of various Utilities is shown in Fig 2.3 & Fig 2.4 through pie chart & Pareto chart respectively

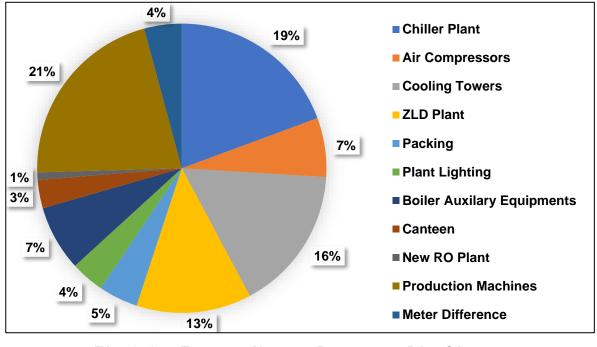



Fig 2.3 : Energy Usage Pattern : Pie Chart

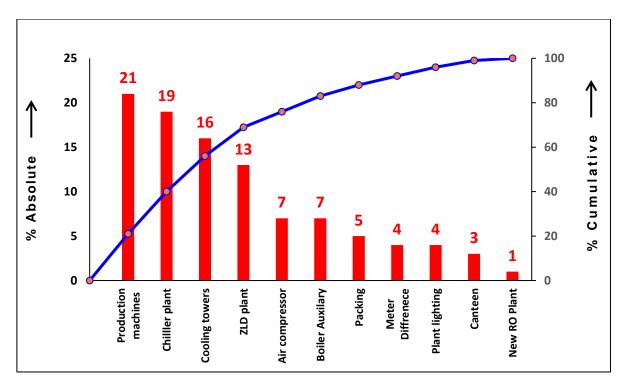



Fig 2.4 : Energy Usage Pattern : Pareto Chart

- It can be seen that the Chillers, Cooling Towers & ZLD plants are the major energy guzzlers of energy accounting to a total of 48%. Of course, production machineries account for 21 % of overall energy consumption of the plant
- The rest 7 categories contribute to 31 % only

# 2.4 ENCON ACCOMPLISHED

The SAPSL team has implemented the following energy conservation measures to reduce the electricity cost:

- Maintenance of acceptable power factor (0.98 to 0.99)
- Replacement of earlier chilled water pumps with constant pumping
- Installation of VFD with manual setting in Air Compressor
- Installation of enthalpy controller along with VFD in Cooling Towers
- Positioning LED light, Motion Sensors, Dimmer, etc., in illumination section.
- Exertion of Electronic Ballasts in selected locations

The personnel of SAPSL deserve appreciation for adoption of these energy conservation

measures and achieving thereby handsome cost savings

## 2.5 SUM UP

- Thus this chapter briefs on the energy usage pattern of the facility as well as the quantum of usage
- The assignment of Detailed Energy Auditing was aimed at accelerating the ongoing energy optimisation activities, identifying avenues for cost conservation, and further fulfilling the mandatory energy audit requirement of the PED of UT of Puducherry
- Thus, the justification.



# DETAILED ENERGY AUDIT -METHODOLOGY ADOPTED

#### 3.1 INTRODUCTION

GSH - USPL had performed a Detailed Energy Audit [ D E A ] of the Solara Active Pharma Sciences Limited ( SAPSL ) for the purpose of evaluation of the performance of equipment, identifying measures for energy conservation and thereby effecting cost reduction. This study comprising Site and Back - Office work was conducted in various stages - over a period of a fortnight - incorporating a comprehensive approach in studying and analysing the utility related operations at the facility.

# 3.2 SURVEY SCHEDULE

As a part of DEA, the following 13 surveys (presented in brevity ) have been carried out in order to get familiarised with the techno - commercial parameters involved in the day - to - day operation of (mainly) Utilities.

#### 3.2.1 Utility Matters

- Identify meters & locations
- Identify areas served by meters
- Analyse energy consumption and demand profiles
- Analyse facility load factor and power factors
- Analyse rate structures and billing methods

#### 3.2.2 Facility Overview

- Interview the facility coordinators
- Document the areas of concern
- Obtain facility floor plans and schedules
- Study utility-wise process requirement
- Document facility utility usage

# 3.2.3 Chillers (VAM & VCR) & Load

- Review existing mechanical plans and specifications
- Obtain submittals and equipment schedules
- Conduct walk-thru of all process locations
- Establish present operating scheme and schedule
- Document the condition of all equipment
- Review ability of equipment to serve needs and the feasibility for opting for retrofits

## 3.2.4 Brine & Chilled Water System

- Identify all chiller locations at site
- Identify associated pumps and areas served
- Review the system operation and condition
- Review existing chiller logs and obtain system run hours
- Document temperature and kW readings
- Determine effectiveness of cooling system
- Determine if modifications can be made to existing chillers to meet CFC issues

# 3.2.5 Chilled Water, Condenser Water, Cooling Tower, & Booster Pumps

- Measurement of Pump Flow Rate, Head, Power parameters (Voltage, Current, Power factor, Harmonics etc.,), Pressure Drop, Temperature etc.,
- Estimation of Actual Efficiency and comparing with design values.
- Establishing Pump Operating Point.
- Identification and suggestions for energy saving potential

# 3.2.6 Cooling Tower (Both Chiller & Process)

 Measurement of parameters viz, Fan Power, Water Flow Rate, Air Flow Rate, Dry Bulb Temperature (DBT), Wet Bulb Temperature (WBT), Sump Temperature, Relative Humidity etc.,

- Estimation & Evaluation of Cooling Tower Performance (Range, Approach, and Effectiveness) and comparing it with design data
- Identification and suggestions for performance improvement and energy saving
   potential

# 3.2.7 Air - Compressor & Nitrogen Plant

- FAD, Leakage assessment and quantification
- Study of actual pressure and dew point requirements
- Improvement on Volumetric Efficiency
- Reduction in compressor discharge pressure , if viable

# 3.2.8 Lighting

- Perform individual building walk through
- Document existing lighting system configurations
- Document existing light levels, fixture quantities and conditions
- Measure fixture wattages
- Establish occupancy hours : room wise and building wise

# 3.2.9 Boiler & Thermic Fluid Heater (TFH)

- Quantity of steam generation
- Fuel usage and its calorific value
- Study of boiler efficiency & flue gas analysis
- Thermal Insulation Survey
- Steam Trap performance
- Energy / cost reduction by improving performance of Boilers / TFH, if exist, any

# 3.2.10 Zero Liquid Discharge (ZLD)

- Study of Effluent Treatment Plant (ETP), RO Plant and Multiple Effect Evaporator
- Identification of treated water to end use
- Process involved & its effectiveness

# 3.2.11 Controls

- Review existing control drawings
- Conduct building and equipment specific survey
- Check operation and accuracy of all existing controls
- Document the condition and the capability of meeting present needs
- Review the feasibility for meeting future retrofit criteria

## 3.2.12 Automation

- Review existing automation point list
- Review system architecture and layout
- Check accuracy and location of sensors
- Document the system features such as trending and demand limiting, if exists.
- Establish present controlling capabilities and review schedules

# 3.2.13 Financial

- Analyse operation and maintenance budgets
- Discuss current budget expenditures and future budget items
- Determine the approach for financing projects

Having elaborated the scope & schedule of various surveys, the generic data collection has been attempted and thus collected is as below :

#### 3.3 GENERIC DATA

Client	Solara Active Pharma Sciences Ltd
No. of Years in Operation	30
Factory Address	33 & 34, Mathur Road, Periakalapet, Puducherry - 605 104
Type of Industry	Pharma
Products Manufactured	Ibuprofen & its derivatives
Hours of Operation	24 / day
Number of Days of Operation	350 / year
Energy Used	Electricity, Briquette, Firewood, Diesel & LPG

Table 3.1 : Generic Data : Listing

**Cost Share** 

# 3.4 ENERGY DATA

- The main source of energy is electricity obtained from PDE that meets the electricity demand of various utilities that includes Chillers, Air Conditioners, Lighting, Pumps, ZLD, Fans & Blowers etc.,
- A solar power plant of 310 kW_p has also been installed on roof top that provides electricity to a minor extent (2%)
- High Speed Diesel (HSD) is used in DG sets as a back up power source at the time of PED power outage
- Thermal energy demand is met by burning agro briquettes in the boilers

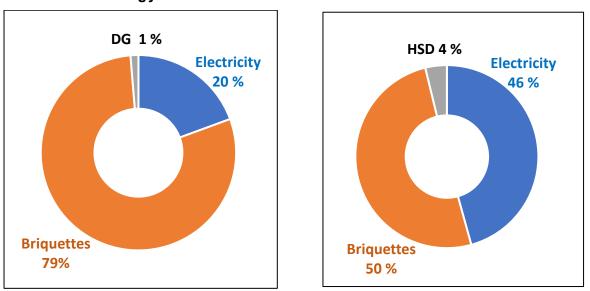

The average energy consumption recorded during the period Apr 21 to Mar 22 is tabulated below:

Table 3.2 : Energy Sources : Utilization Pattern

No	Energy Type	Unit	Apr '21 - Mar '22
1	Electricity		2 36 23 630
2	Electricity (Solar)	kWh	4 84 161
3	Briquette	tons	21 170
4	HSD	lit	1 38 343

• Based on the above, Energy and Cost Share pattern of the energy sources have been

enumerated and shown in Fig 3.1



Energy Share

Fig 3.1 : Energy and Cost Share Diagram

• It can be seen that the cost wise contribution of electricity and thermal energy is near equal requiring attention to conserve both of them to a possible extent.

# 3.5 ENERGY AUDITING

- A Detailed Energy Audit (DEA) study at Solara Active Pharma Science Ltd, Puducherry awarded to the GSH - Utilities Service Pvt Ltd, Chennai in order to accelerate the ongoing energy optimization activities and to fulfil the regulatory mandate
- The Energy Audit Team consisted of 8 members spearheaded by
   Dr R Sethumadhavan Sr Director, Energy (An accredited Energy Auditor of BEE : *AEA 0315*)
- The team included Certified Energy Auditor and Certified Energy Manager as well
- The team members are :

No	Name	Certification / Qualification
1	Dr R Sethumadhavan C E A : 4980 and A E A : 0315	BEE Accredited Energy Auditor (AEA)
2	Dr.R.Sivakumar,: E A 6098	BEE Certified Energy Manager (CEM)
3	Mr.Vimalraj Babu,: EA 32719	BEE Certified Energy Auditor (CEA)
4	Mr.Ghaneson Sathappan	HVAC & Green Building Specialist
5	Mr.Akbar Ziyad	Energy Expert
6	Mr.Veeramani	Energy Engineer
7	Mr.Chellapandi	Energy Engineer
8	Mr R Nishanth	Energy Engineer

- In all, 35 man days were spent at the site during the period 9 12 June 2022 to study and evaluate the performance of Utilities
- Attempts are made in this assignment to optimise the usage of both these sources of energy viz, Electrical & Thermal

# 4

# ENERGY CONSUMPTION

# &

# COST INCURRED - A DETAILING

#### 4.1 INTRODUCTION

- Solara Active Pharma Sciences Ltd, Puducherry being a process unit is an energy intensive one and therefore consumes energy in huge quantities
- The electrical energy demand of the plant is met by three sources, namely,
  - (i) Puducherry Electricity Department (PED), Govt of Puducherry.
  - (ii) DG Sets (In house Captive Generation)
  - (iii) Solar PV (In house Captive Generation)
- This chapter aims at briefing the electrical energy usage in the plant and the corresponding cost implications

#### 4.2 ELECTRICAL ENERGY SOURCING

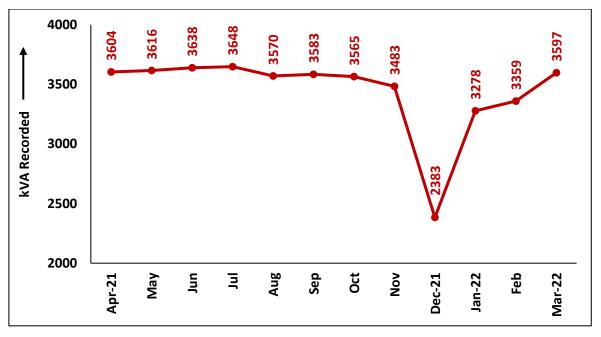
#### 4.2.1 Puducherry Electricity Department :

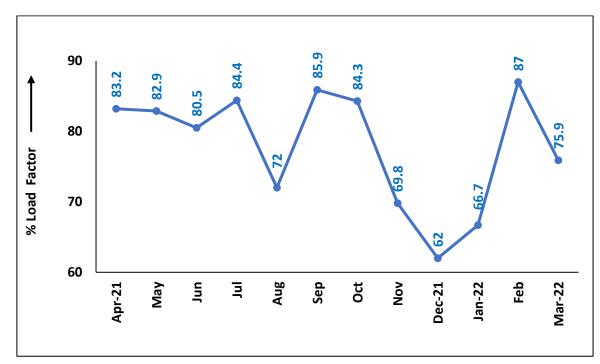
#### 4.2.1.1 kVA Details

- The plant has a sanctioned load of 3860 kVA to meet its electricity requirements
- This fixed charges payable towards kVA contracted on a monthly basis is the higher of the following two :
  - (i) Actual Demand recorded in a month
  - (ii) 85 % of the Contracted Demand

Thus, the minimum billing demand works out to 3281 kVA (85% of 3860 kVA)

• The kVA recorded month - on - month for 12 - month period [ Apr - 21 to Mar - 22 ] Is presented in Fig 4.1





Fig 4.1 kVA Recorded : Apr 21 - Mar 22

- From the above, it can be observed that the actual demand recorded goes more than 90 % of the sanctioned load in majority of the months (9 out of 12) [probably production was at its peak ]
- This indicates the optimum utilization of the Sanctioned Load by plant personnel which needs appreciation

# 4.2.1.2 Load Factor

- The Load factor (LF) is defined as the ratio of avg kVA computed to the actual recorded demand. This is an indicator of the utilization pattern of the sanctioned demand.
- The LF Computed for the period Apr 21 to Mar 22 is given in Table 4.1

No	1	2	3	4	5	6	7	8	9	10	11	12
Month	Apr- 21	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan - 22	Feb	Mar
kVA Actual	3604	3616	3638	3648	3570	3583	3565	3483	2383	3278	3359	3597
kVA Computed	2998	2996	2929	3078	2571	3079	3007	2430	1478	2186	2921	2730
Load Factor %	83.2	82.9	80.5	84.4	72.0	85.9	84.3	69.8	62.0	66.7	87.0	75.9



• The above data is graphically presented in Fig 4.2



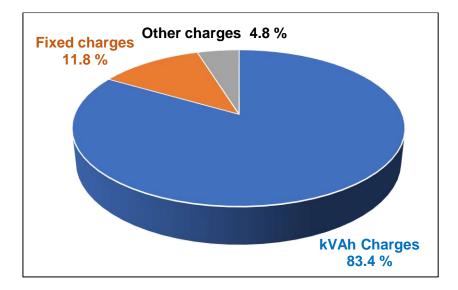
• It can be seen from the above table that the load factor goes above 80 % on majority of the months [ 7 out of 12 months ] which augurs well indicating the optimum as well as uniform utilization of the sanctioned / contracted load

# 4.2.1.3 Energy Cost

- The Energy Charges payable to PED comprise the following three components :
  - kVA Charges
  - kVAh Charges
  - > Other charges that include Electricity Tax, Meter Charges etc.,
- The break up of total charges paid to PED month on month is tabulated below :

Table 4.2 : Energy	Consumption +	Tariff Paid	d Details	:Apr'21 – Mar'22
Tuble Hit i thory	oonoumption .	I WITTE I WIT		

No	Month	kVAh	kWh	PF	Fixed	kVAh	Other	Total		
		Consumption	Consumption		Charges ₹					
1	Apr - 21	21 58 630	21 54 300	0.998	15 13 806	114 40 739	6 47 727	13602272		
2	May	22 28 980	22 21 700	0.997	15 18 762	118 13 594	6 66 618	13998974		
3	Jun	21 09 080	21 02 340	0.997	15 27 834	111 78 124	6 35 298	13341256		
4	Jul	22 89 870	22 76 860	0.994	15 32 160	121 36 311	6 83 424	14351895		


No	Month	kVAh	kWh	PF	Fixed	kVAh	Other	Total
		Consumption	Consumption			Charg	es ₹	
5	Aug	19 12 970	19 07 730	0.997	14 99 484	101 38 741	5 81 911	12220136
6	Sep	22 17 200	21 97 800	0.991	15 04 692	117 51 160	6 62 793	13918645
7	Oct	22 30 330	21 99 860	0.983	14 97 132	118 20 749	6 65 894	13983775
8	Nov	17 49 460	17 28 610	0.988	14 62 818	92 72 138	5 36 748	11271704
9	Dec	10 99 760	10 95 210	0.996	13 78 020	58 28 728	3 60 337	7567085
10	Jan - 22	16 26 290	16 08 520	0.989	13 78 020	86 19 337	4 99 868	10497225
11	Feb	19 62 680	19 21 710	0.979	14 10 612	104 02 204	5 90 641	12403457
12	Mar	20 31 380	19 92 220	0.981	15 10 824	107 66 314	6 13 857	12890995
	Avg         19 68 053         1950 572         0.991         1477 847         10430678         5 95 426         1		12503952					

Average Electricity Cost : ₹ 6.35 / kVAh

• From the above table, the following have been derived

## Table 4.3 : Tariff Paid to PED : Contribution by Components

No	Component	Cost ₹/m	%	Remarks
1	Apparent Energy Charges	1 04 30 678	83.4	kVAh contribution
2	Contracted Demand Charges	14 77 847	11.8	kVA contribution
3	Other charges	5 95 426	4.8	Electricity Tax, Metre charges etc.,
		1 25 03 952	100	



# Fig 4.3 : Tariff Paid to PED : Contribution by Components

 The kVAh charges form 83.4 % and that of kVA are 11.8 %. These values are reasonable indicating not only the effective utilization of energy but also optimised payment of electricity charges to PED

# 4.2.2 Electricity from Solar : In - house Generation

- The facility has installed a 310 kW Solar based power plant as a part of green energy initiative
- The monthly energy generation and the cost incurred from Solar PV are as below :

Table 4.4 : Energy Generated / Consumed : in - house Solar PV System

No	Month	Energy Generated kWh	Cost ₹
1	Apr - 21	45 678	2 80 920
2	May	48 856	3 00 464
3	Jun	43 992	2 70 551
4	Jul	41 328	2 54 167
5	Aug	41 244	2 53 651
6	Sep	40 305	2 47 876
7	Oct	37 262	2 29 161
8	Nov	21 360	1 31 364
9	Dec	37 484	2 30 527
10	Jan - 22	39 862	2 45 151
11	Feb	40 473	2 48 909
12 Mar		46 317	2 84 850
A	verage	40 347	2 48 133
	Total	4 84 161	29 77 591

The above information is presented pictorially in Fig 4.4

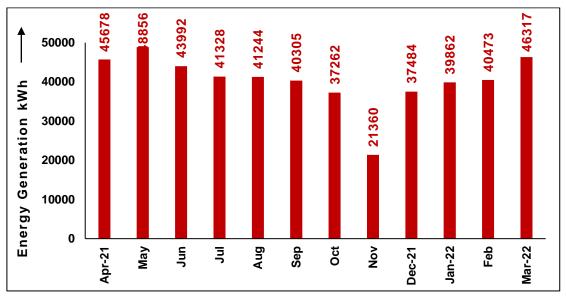



Fig 4.4 : Energy Generation : In - house : Solar

Average Electricity Cost : ₹ 6.15 / kWh

It can be observed that - on an average – about 40 000 kWh have been generated per month and used. This forms about 2% of total energy consumption of the plant. Although this quantum appears insignificant, nevertheless this baby - step is appreciated.

# 4.2.3 Electricity from DG sets : In - house Generation

- As informed earlier, the DG power is resorted to during PED power outage period which is a rare occurrence
- The following Table 4.5 provides the electricity generation quantum as well as the cost of generation during the period Apr-21 to Mar-22

No	Month	Energy Generated	HSD Consumption	Sp. Energy Gen	Cost of HSD	Total Cost of Gen	Specific Energy Cost
		kWh	litres	kWh / lit	₹		₹ / kWh
1	Apr - 21	40 425	11 410	3.54	9 81 260	10 79 386	26.7
2	May	27 493	7 768	3.54	6 68 048	7 34 852	26.7
3	Jun	1 87 979	53 075	3.54	45 64 450	50 20 895	26.7
4	Jul	62 635	17 515	3.58	15 06 290	16 56 919	26.5
5	Aug	64 224	18 084	3.55	15 55 224	17 10 746	26.6
6	Sep	21 771	6 088	3.58	5 23 568	5 75 924	26.5
7	Oct	22 864	6 456	3.54	5 55 216	6 10 737	26.7
8	Nov	8 554	2 421	3.53	2 08 206	2 29 026	26.8
9	Dec	10 360	2 936	3.53	2 52 496	2 77 745	26.8
10	Jan - 22	24 708	6 977	3.54	6 00 022	6 60 024	26.7
11	Feb	3 680	1 037	3.55	89 182	98 100	26.7
12	Mar	16 213	4 576	3.54	3 93 536	4 32 889	26.7
Av	erage	40 908	11 528	3.55	9 91 458	13087247	26.7
Т	otal	4 90 906	1 38 343		11897498	13087243	

Table 4.5 : Energy Generated and Cost incurred : In - house DG sets

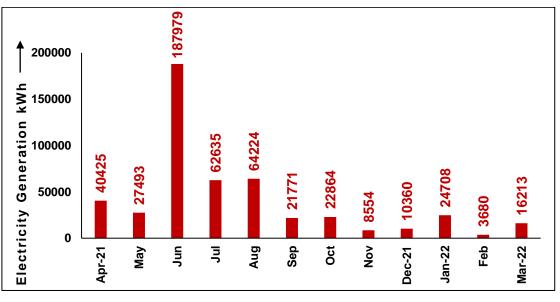
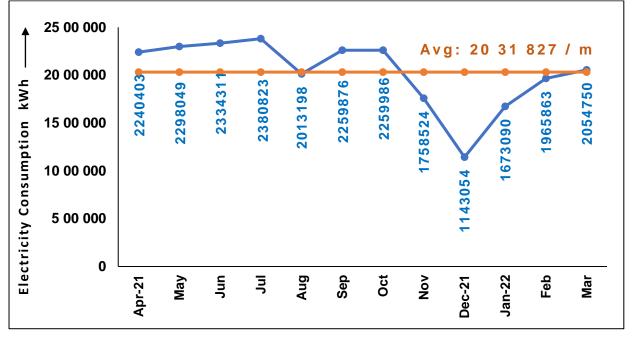



Fig 4.5 : Electricity Generation : In - house : DG Set

# Average Electricity Cost : ₹ 26.70 / kWh

As expected, the cost of energy generated from the DG set is the highest of the three

#### 4.2.4 Electricity : A Consolidation


Having accounted for electricity generation / utilization from 3 sources, a consolidation had

been attempted and presented in Table 4.6

Table 4.6: Electricity Consumption Details : A Consolidation : Apr '21 - Mar '22

No	Month	Electri	city Con	sumptior	ו kWh		Energy	/ Cost ₹	
No	Month	PED	Solar	DG	Total	PED	Solar	DG	Total
1	Apr - 21	21 54 300	45 678	40 425	2240403	13602 272	2 80 920	1079 386	14962578
2	May	22 21 700	48 856	27 493	2298049	13998 974	3 00 464	734 853	15034291
3	Jun	21 02 340	43 992	1 87 979	2334311	13341 256	2 70 551	5020 895	18632702
4	Jul	22 76 860	41 328	62 635	2380823	14351 895	2 54 167	1656 919	16262981
5	Aug	19 07 730	41 244	64 224	20 13 198	122 20 136	2 53 651	17 10 746	141 84 533
6	Sep	21 97 800	40 305	21 771	22 59 876	139 18 645	2 47 876	5 75 925	147 42 446
7	Oct	21 99 860	37 262	22 864	22 59 986	139 83 775	2 29 161	6 10 738	148 23 674
8	Nov	17 28 610	21 360	8 554	17 58 524	112 71 704	1 31 364	2 29 027	116 32 095
9	Dec	10 95 210	37 484	10 360	11 43 054	75 67 085	2 30 527	2 77 746	80 75 357
10	Jan - 22	16 08 520	39 862	24 708	16 73 090	104 97 225	2 45 151	6 60 024	114 02 401
11	Feb	19 21 710	40 473	3 680	19 65 863	116 41 375	2 48 909	98 100	119 88 384
12	Mar	19 92 220	46 317	16 213	20 54 750	128 90 995	2 84 850	4 32 890	136 08 734
Т	otal	234 06 860	4 84 161	4 90 906	24381 927	1492 85 337	29 77 590	13087248	165350175
Avg 19 50 572 40 347 40 909 20 31 827 125 03 952 2 48 133 1090		1090604	138 42 689						
	%	96.0	2.00	2.00	100	90.3	1.8	7.9	100.0

The same are presented pictorially in Fig 4.6 & Fig 4.7





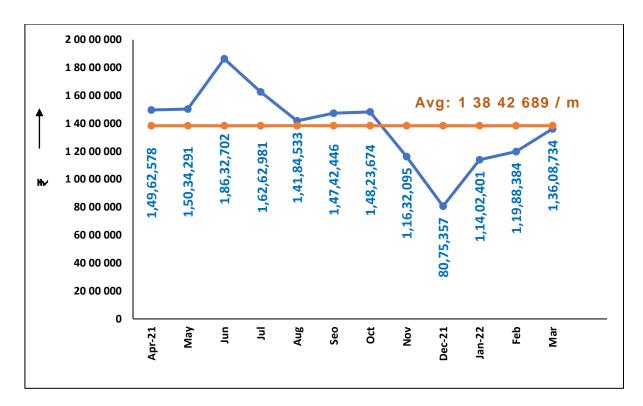
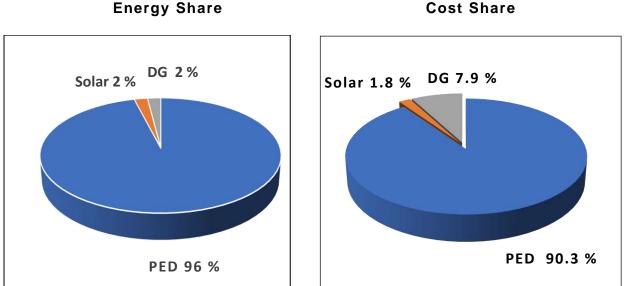




Fig 4.7: Cumulative Cost Incurred : Apr 21 – Mar 22

Armed with the above information, the Share Index Diagram (SID) has been prepared



**Cost Share** 

Fig 4.8 : Energy & Cost Share Diagram (EB + Solar + DG)

The weighted average unit cost of electricity generated through each of the energy sources is presented in Fig 4.9 and the weighted average cumulated one

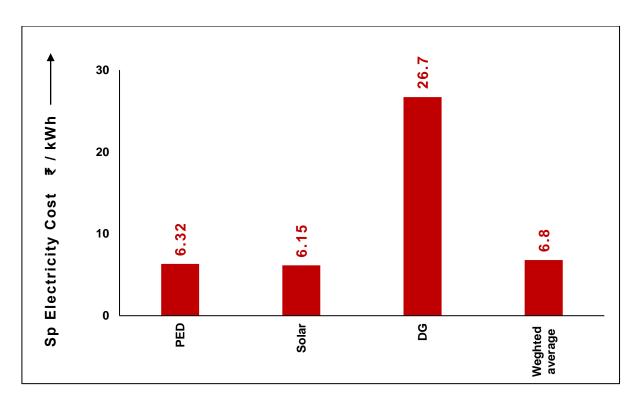



Fig 4.9 : Unit cost of Energy from Various Energy Sources

Average Electricity Cost : ₹ 6.80 / kWh

This has been made use of in the economic calculations of the Energy Conservation Schemes enumerated in the later chapters

# 4.3 THERMAL ENERGY

- As mentioned earlier, agro briquette is the thermal energy source that fulfils the thermal energy requirements of the process operations of the plant
- Occasionally, furnace oil fired boiler is used when the need arises by way of annual maintenance shutdown of solid fuel fired boilers.
- The boiler that is used typically throughout the year is the 16 tph **Forbes Vynck** briquette fired boiler. This boiler also has a provision to render thermal energy to thermic fluid which is used in some selected processes
- Thus, this boiler brings out steam as well thermic heat

- The steam is generated at a pressure of 24 ksc (abs) and fed to the Back Pressure Steam Turbine (575 kW) for power generation before taking the LP steam to the process use for latent heat extraction
- Fuel for the boiler is briquette which is sourced in a command area of about 80 100 km radius
- The techno-commercial details pertaining to the briquette are presented in the Table below :

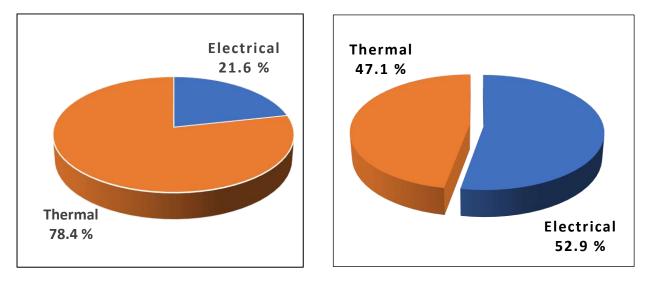
			Briquette			Overall Cost of
No	Month	Consumption tons	G C V kcal / kg	Energy Equivalent Million kcal	₹ / ton	Briquette ₹
1	Apr- 21	2 044	3 600	7 358	6 990	1 42 87 560
2	May	2 098	3 600	7 553	7 000	1 46 86 000
3	Jun	2 124	3 750	7 965	7 280	1 54 62 720
4	Jul	2 180	3 650	7 957	7 090	1 54 56 200
5	Aug	1 719	3 700	6 360	7 180	1 23 42 420
6	Sep	2 047	3 600	7 369	6 985	1 42 98 295
7	Oct	2 015	3 600	7 254	7 000	1 41 05 000
8	Nov	1 380	3 500	4 830	6 800	93 84 000
9	Dec - 21	672	3 600	2 419	6 990	46 97 280
10	Jan - 22	1 350	3 450	4 658	6 700	90 45 000
11	Feb	1 930	3 450	6 659	6 700	1 29 31 000
12	Mar - 22	1 612	3 500	5 642	6 800	1 09 61 600
	Total	21 171	-	76 024	-	14 76 57 075
Α	verage	1 764	3 591	6 335	6 974	1 23 04 756

# Table 4.7 : Briquette: Techno Commercial Details : Apr 21 - Mar 22

- From the above, the consolidation is that the Average "Thermal Energy in" is 6335 million kcal / month and the cost associated with it ₹ 1.23 crores / month
- The Furnace Oil consumption is literally Nil in the period considered

#### 4.4 ENERGY - COST DIAGRAM

• Having established the thermal and electrical energy utilization quantity, the overall energy and cost share for the plant is established and presented in Table 4.8


Table 4.8 Energy Cost Share : Thermal & Electrical

No	Sourco	Energy L	Isage	Cost		
NO	Source	kWh / m	%	₹ / m	%	
1	Thermal	73 66 280	78.4	1 23 04 756	47.1	
2	Electrical	20 31 828 21.6		1 38 16 430	52.9	
	Total	92 80 665	93 98 108	100.0	2 61 21 186	

The above details are shown below through a pie diagram







# Fig 4.10 : Energy and Cost Share Diagram : Overall

#### 4.5 SUM UP

- The thermal and electrical energy share of the plant is **78.4 % & 21.6 %** respectively while the cost share is **47.1% & 52.9 %** respectively
- This indicates that the cost spent on electrical energy is **5%** more than that spent on thermal energy

- Hence, the focus on energy auditing shall be towards optimising the electrical energy usage majorly
- Nevertheless, cost reduction in thermal energy is also welcome
- On an average the plant spends ₹ 31.0 crores / y on energy usage alone
- Thus, the conduct of energy audit activity is justified
- This report based on the study outcome outlines a couple of energy cum cost conservation proposals that are viable both on technical and economic fronts

The management is requested to take steps to implement the "Encon" proposals on a priority basis.



# PERFORMANCE STUDY

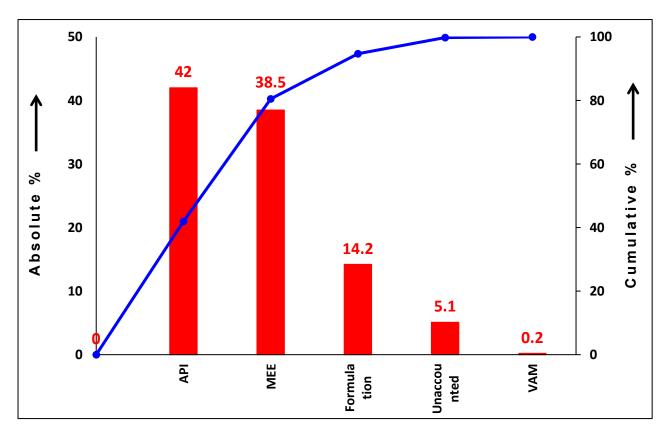
# ΟΝ

# THERMAL UTILITIES

## 5.1 INTRODUCTION

- In this chapter, an attempt is made to evaluate the performance level of thermal Utilities / Systems in the plant. This exercise is expected to indicate the ways to achieve reduction in energy consumption in these utilities wherever possible
- The scrutiny on the working / performance of the Utilities / Systems of the plant has been analysed as per the following classification :
  - (i) Boiler Performance Establishment
  - (ii) Steam Distribution Pattern
  - (iii) Condensate Recovery a briefing
  - (iv) Steam Trap : A Diagnosis
  - (v) Hot Surface Insulation : An Examination
- Various parameters collected, measured, analysed and the ultimate outcome in terms of performance are detailed and discussed in this Chapter

# 5.2 UTILITIES / SYSTEMS CONSIDERED


# 5.2.1 Boiler Performance Establishment

- The performance evaluation of the Boiler is carried out through both Direct Method and Indirect Method.
- In the Direct Method, the steam generation rate and fuel consumption rate were recorded and the Steam – Fuel Ratio is arrived at. This ratio is multiplied by the Enthalpy Factor ( = Steam Enthalpy / Fuel G C V ) to arrive at the overall efficiency of the boiler
- The Indirect method was resorted to for the following two specific reasons :
  - Gives Independent results irrespective of Steam Flow / Water Flow measurements as well the Fuel Firing Rate

- ii) This method also known as Loss Estimation Method is the most reliable one as it accounts for all losses that are taking place in the boiler operation and thereby offer scope for reducing the loss
- Indirect Efficiency computation involves the measurement of Key Boiler Performance Indicators (KPIs) viz Flue Gas Temperature, O₂ %, CO₂ %, CO %, Unburnt Carbon (UBC) in ash, Fuel GCV, Fuel Composition etc. These KPIs were recorded using state - of - the - art calibrated instruments, thereby ensuring the accuracy in measurement

# 5.2.2 Steam Distribution Pattern

- The Steam Distribution / Utilisation pattern is established based on the historic data of the plant in terms of the quantity of steam generation.
- The process sections of the plant use the HP Steam (8.5 ksc) as well as LP Steam
   (4.5 ksc) for their process operation



• A pareto chart had been developed to understand the steam usage pattern

Fig 5.1 : Steam Usage Pattern : Pareto Chart

# 5.2.3 Condensate Recovery : A Briefing

- The condensate recovery estimation was made through the use of
  - i. Historic Data
  - ii. Field Level Measurements

It was presented as a percentage of the steam generated as well as in absolute values

- This analysis gives an indication on the quantity of condensate that is drained / goes unrecovered enabling us to work further on the reduction of this.
- A Mass & Energy Balance Analysis has been made on both Steam Distribution & Condensate Recovery and that had given an in - sight into the energy that was used effectively and that was lost
- This information was made use of in the subsequent analysis

# 5.2.4 Steam Traps - A Diagnosis

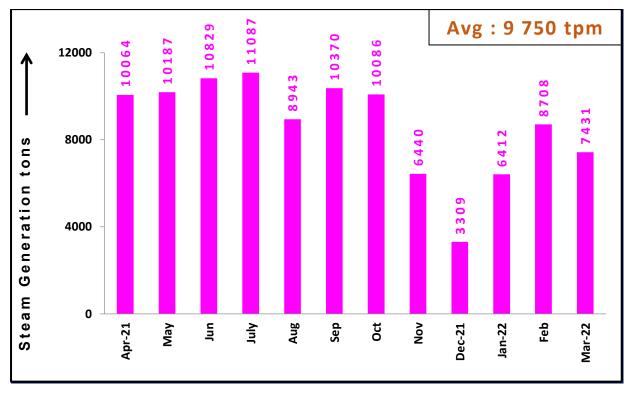
- A diagnostic study on Steam Traps was carried out to understand the working status of the traps and the type of fault / defect encountered, if any, in these traps
- Remedial measures have been suggested for setting right the non performing traps

# 5.2.5 Hot Surface Insulation - An Examination

- The steam line insulation survey throws light on the quantum of recoverable heat that is lost to the ambient because of bare / exposed / uninsulated hot pipe surfaces, flanges, joints, valves etc.
- A thermographic study had been made and the details are presented in the ensuing sections

### 5.3 PERFORMANCE ASSESSMENT ON UTILITIES / SYSTEMS

### 5.3.1 Boiler


### 5.3.1.1 Technical Specifications

The plant has 2 boilers (Thermax & Forbes Vyncke) and the technical specs are as below :

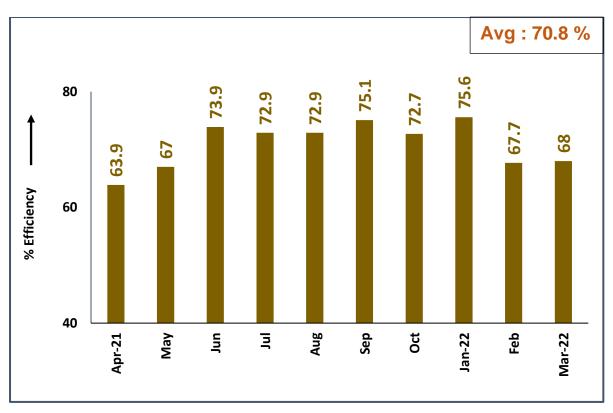
Make	Thermax, Pune. Forbes Vyncke, Pune			
Туре	Travelling grate with multizone combustionDynamic Air cooled step grate with multizo combustion			
Fuel	Briquette [ crushed ]			
Capacity	16 tph(f & a 100°C)			
Pressure Rating		32 bar		
Steam Quality	Saturated	<ul> <li>Super - heated ( Power generation sake )</li> <li>Thermic Heater (1 million kcal / h )</li> </ul>		
Year of Commencement	2019 2019			
Turbine Rating	-	540 kW		

### 5.3.1.2 Steam Generation & Efficiency : Historic Data

The historic data on steam generation - as collected from the plant personnel - for the period



Apr - 21 to Mar - 22 is presented below :


Fig 5.2 : Steam Generation Data : Apr '21 - Mar '22

- The Steam Flow Meter installed in the Steam Header is used to record the total steam generation
- The fuel (Briquette) input quantity is religiously measured so also its Moisture, Ash Content and Gross Calorific Value on a regular basis.
- Thus, through the measurement of steam flow, fuel feed rate and fuel properties, the overall operational efficiency of the boiler has been estimated by the plant personnel.
   This is the 'Direct Method' of performance prediction
- The technical details pertaining to boiler operations are presented in Table 5.1 (Thermax boiler) & Table 5.2 (Forbes Vyncke boiler)

	Briquette		Ste	am	o / =	Direct		
No	Month	Consumption	GCV	Heat Input	Generation	Enthalpy	S / F Ratio	Efficiency
		tons	kcal / kg	Million kcal	tons	Million kcal		%
1	Apr - 21	311	3 600	1 120	1 270	715	4.08	63.9
2	May	155	3 600	558	664	374	4.28	67.0
3	Jun	261	3 750	979	1 286	724	4.93	73.9
4	Jul	165	3 650	602	779	439	4.72	72.9
5	Aug	80	3 700	296	379	213	4.74	72.9
6	Sep	235	3 600	846	1 144	644	4.87	75.1
7	Oct	276	3 600	994	1 283	722	4.65	72.7
8	Nov	0	3 500	0	0	0	0.00	0
9	Dec	0	3 600	0	0	0	0.00	0
10	Jan - 22	124	3 450	428	574	323	4.63	75.6
11	Feb	263	3 450	907	1 107	623	4.21	67.7
12	Mar - 22	160	3 500	560	677	381	4.23	68.0
	Avg	169	3600	608	764	430	4.51	70.8

Table 5.1 : Performance Data : Apr '21 - Mar '22 : Thermax

Fig 5.3 presents the Thermal Efficiency of the boiler computed on a month - on - month basis through Direct Method



# Fig 5.3 : Thermal Efficiency of the Boiler :Direct Method : Thermax

Likewise, the performance data collected on Forbes boiler is presented below in Table 5.2

			Briquette		Ste	eam	a / =	Direct
No	Month	Consumption	GCV	Heat Input	Generation	Enthalpy	S / F Ratio	Efficiency
		tons	kcal / kg	Million kcal	tons	Million kcal	Natio	%
1	Apr - 21	1 986	3 600	7 150	10 064	5 696	5.07	79.7
2	May	2 066	3 600	7 438	10 187	5 766	4.93	77.5
3	Jun	2 080	3 750	7 800	10 829	6 129	5.21	78.6
4	Jul	2 149	3 650	7 844	11 087	6 275	5.16	80.0
5	Aug	1 702	3 700	6 297	8 943	5 062	5.25	80.4
6	Sep	2 020	3 600	7 272	10 370	5 869	5.13	80.7
7	Oct	1 998	3 600	7 193	10 086	5 709	5.05	79.4
8	Nov	1 357	3 500	4 750	6 440	3 645	4.75	76.7
9	Dec	672	3 600	2 419	3 309	1 873	4.92	77.4
10	Jan - 22	1 346	3 450	4 644	6 412	3 629	4.76	78.2
11	Feb - 22	1 898	3 450	6 548	8 708	4 929	4.59	75.3
12	Mar - 22	1 559	3 500	5 457	7 431	4 206	4.77	77.1
	Total	20 833	43 000	74 810	1 03 866	58 788	60	-
A	verage	1 736	3 600	6 234	8 656	4 899	4.97	78.4

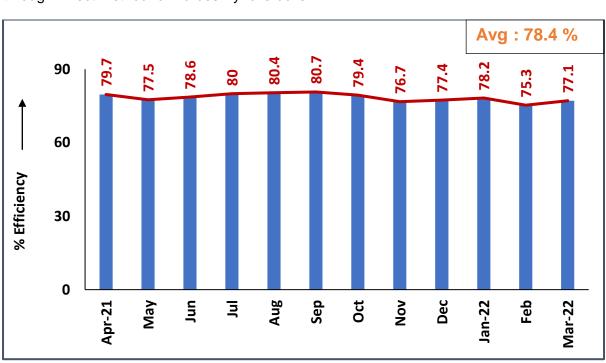



Fig 5.4 presents the Thermal Efficiency of the boiler computed on a month - on - month basis through Direct Method for Forbes Vyncke boiler

### Fig 5.4 : Thermal Efficiency of the Boiler : Direct Method : Forbes

### 5.3.1.3 Comments

- The average overall thermal efficiencies of the Thermax & Forbes boiler is 70.8 % and 78.4 % respectively . This clearly indicates the performance superiority of Forbes boiler
- The months of July Oct 21 (4 months) have shown an efficiency higher than 80% for Forbes boiler when it is a bit dicey
- As such, the average overall efficiency of 78.4 % obtained is marginally on the higher side as far as the Forbes boiler is concerned
- This can be ascertained for its veracity once the GCVs of Briquette are evaluated month on month basis

# 5.3.1.4 Performance Evaluation – Methodology Recommended

At present, the Direct Efficiency Method is being practised to evaluate the performance of the boiler. This method relies upon the flow rate of steam and the fuel firing rate. This method – albeit quite acceptable – has the scope of offering efficiencies that could be a bit dicey as the measurements of steam / fuel flow may not be quite accurate. Error factor might creep in

- Hence, we had gone ahead with the evaluation of the performance of boiler through the time – tested Indirect method (also known as Loss Prediction Method) and thereby establish the overall efficiency and also the Steam Fuel Ratio
- All the data required for computing Boiler Efficiency through Indirect Method have been gathered / measured at the plant through various thermo – mechanical instruments possessed by the Auditors

# 5.3.1.5 Performance Data Collection : Protocol Adopted

- During the audit period, only Forbes boiler was in operation and hence the performance was evaluated for this boiler only
- To start with, the fuel properties viz Gross Calorific Value ( G C V ) and Proximate Analysis were obtained from the client that are lab tested
- The test report on the fuel analysis is presented below :

Table 5.3 :	Proximate	Analysis	of Fuel	: As	Received	Basis
-------------	-----------	----------	---------	------	----------	-------

No	1	2	3	4	5
Parameter	Fixed Carbon	Volatile Matter	Ash	Moisture	GCV
Unit	wt %				kcal / kg
Value	37	45.7	6.8	10.5	3900

# Table 5.4 : Ultimate Analysis of Fuel : Derived from Proximate Analysis

No	1	2	3	4	5	6	7
Parameter	Carbon	Hydrogen	Nitrogen	Oxygen	Sulfur	Ash	Moisture
Wt%	65.2	4.9	1.2	14.4	0	6.8	10.5

• A performance trial was taken on the Forbes Vyncke boiler on 11th Jun 2022 for a period of 200 mins (16:00 h – 19:20 h) and the following data were captured :

- Briquette Consumption
- Steam Flow rate
- Steam Pressure and Temperature

- > Feed Water Temperature, Pressure and Flow Rate
- Condensate Flow & Temperature
- Furnace Pressure & O₂ level
- > Flue gas Temperatures at various locations
- The summary of major data collected during the conduct of trial is summed up below :

No	Parameter	Unit	Data
1	Start Time	٢	16 : 00
2	End time	h	19 : 20
3	Period of Operation	min	200
4	Stoom Constation	tons	48.8
4	4 Steam Generation	tph	14.64
5	Priquette Consumption	tons	9.5
5	Briquette Consumption	tph	2.85
6	Steam Fuel Ratio	-	5.14
7	Steam Pressure & Temperature	ksc & °C	24 / 223
8	Feed Water Temperature	°C	101

 Table 5.5 : Data Summary on Boiler Trials Conducted

# 5.3.1.6 Performance Evaluation through Direct Method

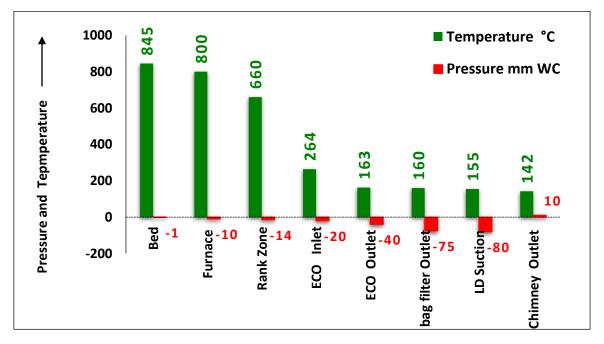
- Based on the data collected, the overall Thermal Efficiency of the Boiler has been computed through Direct Method
- The data consolidated for Thermal Efficiency prediction are tabulated below :

### Table 5.6 : Data Consolidation : Efficiency Evaluation : Direct Method

No	Parameter	Unit	Qty
1	Steam Flow	t / h	14.64
2	Steam Pressure	ksc	24
3	Steam Temperature	°C	223
4	Feed Water Temperature at Deaerator Out		101
5	Briquette Consumption	tph	2.85
6	Briquette GCV ( as fired )	kcal / kg	3 900

Rise in Steam Enthalpy in the Boile	r = (667 - 101)	=	566 kcal / kg
Heat Out ( Useful Heat ) in Steam	= (14.64 x 1 000 x 566)	=	8.29 x 10 ⁶ kcal / h

Heat In (Fuel Firing)	= (2.85 x 1000 x 3 900)	= 11.11 x 10 ⁶ kcal / h
Hence, overall Thermal Efficiency	= (8.29/11.1) x 100	= 74.6 %


Thus, the thermal efficiency of the Boiler has been predicted as 74.6 % through Direct Method

### 5.3.1.7 Performance Evaluation through Indirect Method

- The data pertaining to Pressure Temperature O₂ content of the flue gas in the downstream portions of the boiler have been established through data gathered from SCADA.
- The data collected are tabulated and graphically represented below in Table 5.7 & Fig 5.5 respectively

No	Location	Pressure	Temperature
No	Location	mm WC	°C
1	Bed	- 1	854
2	Furnace	-10	750 – 800
3	Bank Zone	- 14	660
4	Economiser Inlet	- 20	264
5	Economiser Outlet	- 40	163
6	Bag Filter Outlet	- 75	160
7	ID Suction	- 80	155
8	ID Outlet	+ 10	142

#### Table 5.7 : Flue Gas Pressure & Temperature Profile - Recorded





- The temperature & pressure profiles appear acceptable
- The following data obtained and consolidated during the boiler trial have been made use of in the evaluation of the Boiler Thermal Performance (BTP) through Indirect Method
- The data collected included coal GCV, steam pressure & temperature, O₂ level at Economiser and temperatures of the flue gas at various locations etc.,

No	Parameter	Unit	Value
1	Briquette Firing Rate	t/h	2.85
2	Briquette GCV	kcal / kg	3 900
3	Briquette Moisture - as fired	%	10.5
4	Feed Water Temperature	°C	101
5	Steam Pressure	kg / cm ²	24
6	Steam Temperature (saturation)	°C	223
7	O ₂ Level at Furnace	%	6.5
8	Flue Gas Temperature at Economiser Outlet	°C	162
9	Mass Loading	%	91.5
10	Energy loading	%	95.9

#### Table 5.8 : Data Collected during Boiler Performance Trial

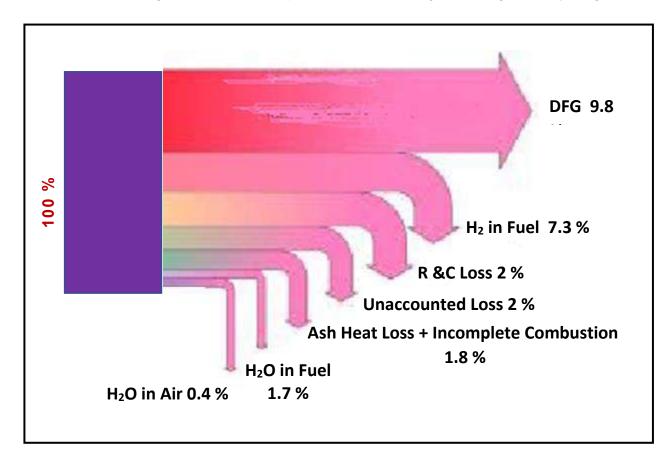

Based on the above data, the various losses - listed below - have been estimated.

Table 5.9	: Heat Loss Co	mputed - Breakup	: Indirect Method
-----------	----------------	------------------	-------------------

No	Type of Loss	%
1	Dry Flue Gas Heat Loss	9.8
2	Heat Loss due to $H_2$ in Fuel	7.3
3	Heat Loss due to Moisture in Fuel	1.7
4	Heat Loss due to Moisture in Air	0.4
5	Sensible Heat Loss in Ash & Heat Loss due to Unburnt in Ash + Heat Loss due to Incomplete Combustion	1.8
6	Heat Loss due to Radiation & Convection	2.0
7	Unaccounted Loss (for boiler of this rating )	2.0
	Total	25.0

Note : Loss No : 5 : has been established through visual observation

: Loss No : 7 : has been established from Boiler standard manual



The heat loss diagram of the boiler is presented below in Fig 5.6 through Sankey Diagram

# Fig 5.6 : Heat Loss Computed – Sankey Diagram : Indirect Method

Hence, Useful Heat = Boiler Thermal Efficiency = (100 - 25) = 75 %

Thus, the realistic attainable efficiency has been worked out as 75% for this boiler.

### 5.3.1.8 Steam Fuel Ratio : Derived

- The overall efficiency of the Boiler has been estimated at 75 % which is quite acceptable for the boiler of this type, capacity and the firing technique employed
- The efficiency recorded by direct method was 74.6 %
- Hence, it shall be prudent to consider henceforth the boiler efficiency as 75 % for all computation purposes,

• Using this data, namely the Boiler Efficiency, the Steam Fuel Ratio could be computed as below :

Fuel G C V=3 900 kcal / kgBoiler Efficiency=75 %Steam Enthalpy=566 kcal / kgHence, Steam Fuel Ratio= $[3 900 \times 0.75 / 566] = 5.17$ 

#### 5.3.1.9 Sum Up

 Thus, a detailed analysis on boiler operation by way of conduct of trial and with measured data on fuel quality and operating parameters, has revealed the overall boiler efficiency at 75 %. This is on - par with the efficiency computed through Direct Method.

S F R = 5.17

- This boiler is loaded beyond 90% (energy basis) and that could be one of the reasons for attaining this high efficiency of operation.
- This efficiency level indicates that the boiler operation is near normal and almost optimum
- It is suggested that attempts shall be made to co burn the casuarina wood (chopped) along with briquette - in a gradual manner - which can bring down the cost of steam reasonably due to lesser cost of wood
- This issues is discussed in Chapter 10 that deals with Energy / Cost saving measures regarding boiler operation

#### 5.4 STEAM DISTRIBUTION

#### 5.4.1 Scheme

- The steam is produced at 24 ksc (g) pressure in the boiler house and delivered to the Steam Turbine (540 kW) for power generation through back pressure mode.
- The pressure of the outlet steam is 9 ksc (g) that goes for process usage at various locations

- This process steam usage is broadly classified into 2 pressure zones viz one at High Pressure and the other at Low Pressure
- Of the total quantity of steam produced, 55 % is used in the process at High Pressure (8.5 ksc) and the rest 45 % is used at lower pressures (4.5 ksc)
- The low pressure steam goes for M E E section while HP steam goes for process usage (Formulation + A P I plants)
- Fig 5.7 shows the Steam Distribution based on the "Pressure Usage" at the process

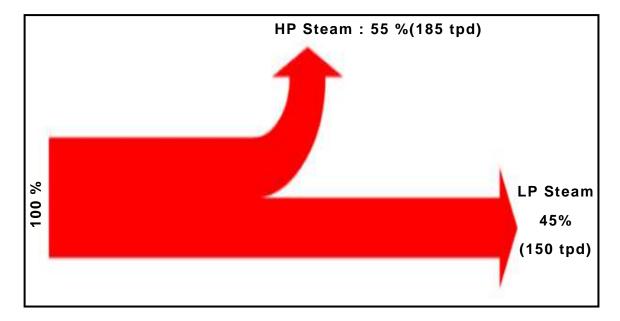



Fig 5.7: Steam Distribution Diagram : Pressure Basis

### 5.4.2 Steam Distribution : A Brief

A brief description on the steam usage pattern is given below :

- Live steam at a pressure of 0.35 ksc is injected into the De aerator of boiler for the removal of oxygen & dissolved gases
- (ii) Steam consumption takes place in the Formulation, MEE, API and VAM Sections.Both HP & LP steam are used in the process as per requirement.

Capturing the data made available by the plant personnel, a steam distribution / utilisation diagram has been prepared for the plant and is presented in Table 5.10

No	Month	Steam Consumption tpd			
No	wonth	Formulation	ΑΡΙ	MEE	Total
1	Apr - 21	48	150	137	335
2	May	43	152	133	328
3	Jun	45	172	142	359
4	Jul	43	166	148	357
5	Aug	40	107	114	261
6	Sep	44	145	143	332
7	Oct	34	141	135	310
8	Nov	28	88	81	197
9	Dec 21	43	29	10	82
10	Jan - 22	41	75	61	177
11	Feb	39	146	123	286
12	Mar - 22	36	124	92	252

Table 5.10 : Steam Consumption Data : Apr '21 - Mar '22

Fig 5.8 depicts the Steam Distribution Diagram developed based on the historic data provided

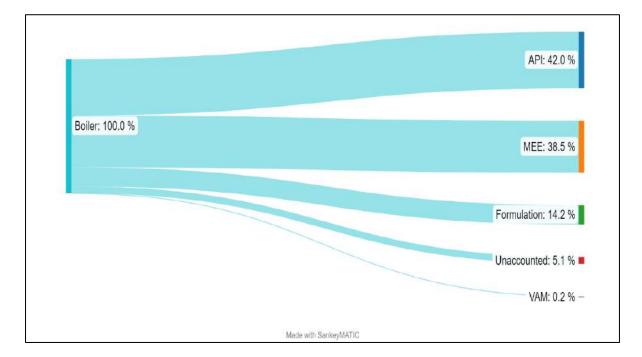



Fig 5.8 : Steam Distribution Diagram : Section wise usage

- It can be inferred that 80 % of the steam utilization is by the 2 major areas, namely, API and MEE.
- Thus, the steam distribution protocol has been briefly outlined in this section

### 5.5 CONDENSATE RECOVERY

#### 5.5.1 Basics

- Condensate recovery is a process to reuse the water and the sensible heat contained in it. Recovering the condensate instead of throwing it away can save energy and also the additional requirement of make-up water. It is a fact that the overall cost of steam production can be minimized by the adoption of effective condensate recovery
- The effectiveness of the Condensate Recovery System (CRS) is gauged by comparing the recovered quantity of condensate against the quantum of steam supplied to the process. It is generally expressed as a percentage of the steam supplied to the process.
- Higher the quantum of condensate recovery, more beneficial it is for the process facility from the financial, technical, and environmental perspective. Hence, all possible efforts shall be made to recover as much condensate as possible and send to the boiler as the financial implications of the same are quite favourable.

Steam utilization in industries is basically of two types : (i) Direct Utilization and (ii) Indirect Utilization.

- In direct utilization, steam is injected directly into the process and is used for reaction / temperature rise in the process and thereby mass addition to the final product. In direct utilization, recovery of condensate is ruled out as the steam is consumed
- In indirect utilization, latent heat of steam is used for heat transfer to the process through a heat exchanging surface. No direct mixing of steam with the product takes place in this scheme. In some cases, like tracing application, a part of sensible heat of the steam below saturation temperature is also made use of for heating

Theoretically 100 % recovery of condensate from indirect utilization of steam is possible subjected to the purity of the condensate recovered

Thus, the condensate recovery option from steam utilization locations depends on the way the steam is utilized, viz, direct utilization or indirect utilization.

Indirect utilization gives maximum opportunity to recover condensate but due to certain constraints, recovery could be limited. However, in reality, it may not be possible to recover all the condensate as a part of condensate will be lost as flash steam or lost through vent or got contaminated by damages caused in heat exchangers etc. Further, the condensate may also be not recovered due to lack of attention or not knowing the financial benefits of recovery.

Thus, there could be a couple of reasons for not effecting the condensate recovery to the extent desired.

#### 5.5.2 Present Scheme :

- As mentioned earlier, the steam produced in the boiler (live steam) goes for Process
   Operations and MEE in ZLD section.
- Currently as per the data provided the condensate recovery is around 60% only with 40% of the condensate not being used back
- One of the reasons for the non recovery of the condensate is partial contamination
- Also, it was noticed that the condensate draining out of steam traps is not being collected.
- The condensate from the steam traps installed in Main Headers & Sub Headers lines
   is not contaminated still not recovered and hence recovery should be attempted to.
- Of course, this quantum is expected to be less than 5% of total steam generated and still worth recovering it.

### 5.5.3 Condensate Recovery

Condensate recovery data had been captured for a period of 6 days ( 6th - 11th June'22)
 when the auditing was in progress - and is presented below

- Steam is used in the process plant, API formulation section and MEE section and accordingly condensate has also been collected from these sections and sent back to boilers
- Further, it is mentioned here that condensate from steam traps of headers as well from equipment is not collected partly because of the anticipation of possible contamination in equipment
- The plant wise steam consumption & condensate collection is enumerated in Table 5.11

			Quantity in TPD							
No	Day		Formu	ation		ΑΡΙ			MEE	
		Gen	Cond	NR	Gen	Cond	NR	Gen	Cond	NR
1	06.06	38	31	7	143	125	18	128	48	80
2	07.06	37	31	7	138	123	15	144	49	95
3	08.06	36	29	7	132	119	13	146	52	94
4	09.06	37	31	6	137	127	10	153	55	98
5	10.06	36	27	9	148	112	36	151	50	101
6	11.06	39	29	10	147	115	32	154	52	102

The above details are presented in the form of chart for a better understanding

Table 5.11 : Steam Consumption and Condensate Collection

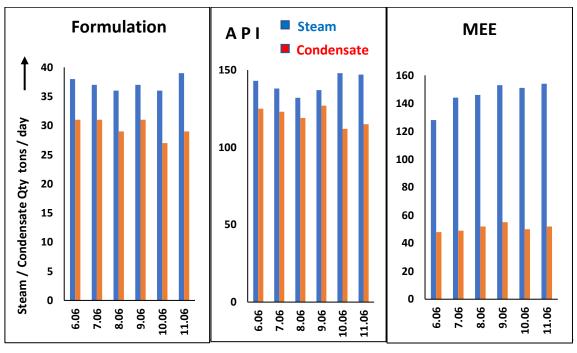
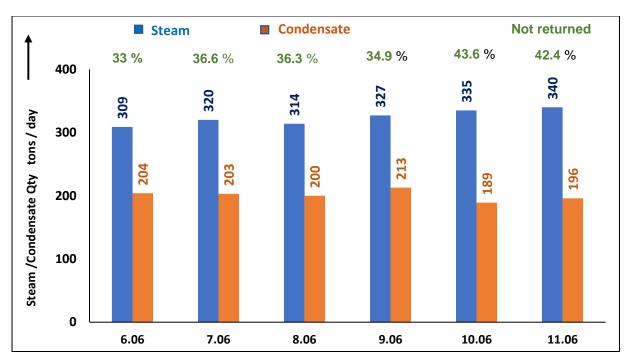




Fig 5.9 : Steam Consumption and Condensate Return

- From the above charts, the major inference is that the condensate recovery from
   M.E.E Section is about 35% only and the rest 65 % is going unutilised
- The condensate collection is in the range of 80 90 % in Formulation and API section



• A combination of above data is shown below :

Fig 5.10 : Consolidation of Steam Consumption & Condensate Return : Cumulative Data

- Thus, it is concluded that the condensate recovery is effective to a level of 2 / 3rd and
   1 / 3rd amounting to 110 tpd is lost per day. This is the cumulative data.
- As indicated earlier, attempts shall be made to recover condensate from main steam traps installed in the Headers / Sub Headers - as they would be uncontaminated which can account for not less than 10 tpd

# 5.5.4 Mass and Energy Aspect

- The condensate that goes unrecovered is close to 110 tons / day which is about 1/3rd of the steam generation
- The energy content of the condensate that goes unrecovered had been computed to be around 15 tons / day which is less than 5% only.

• Thus, it can be inferred that the energy left - out in the unrecovered condensate is only 5% of the total steam energy generated although it is 33 % on mass

# 5.5.5 Sum Up

- A concise analysis has been carried out on 'Steam Distribution' as well the 'Condensate Recovery' and that had revealed that the condensate recovery is 2 / 3rd only and 1 / 3rd goes unrecovered
- However, on the energy front, the energy lost is only 5%.
- Only the major observation made was the non collection of condensates from header line steam traps and attempts shall be initiated to collect this condensate

### 5.6 STEAM TRAPS

### 5.6.1 Preamble

- Steam Trap is a device used to discharge condensate and non-condensable gases with a negligible consumption or loss of live steam. Most steam traps are nothing more than automatic valves. They open, close or modulate automatically as per the requirement.
- The two important functions of steam trap are :
  - Discharge the condensate as soon as it is formed (it consumes insignificant quantity of live steam)
  - 2. Let out air and other non-condensable gases

# 5.6.2 Trap Selection and Types of Traps used

• Trap selection depends on the application, the pressure differential across the trap, the amount of condensate to be discharged etc,

The traps in Steam Distribution Line [SDL] will have to carry out two functions:

- (i) Remove Air + Condensate during start up
- (ii) Drain out condensate that had formed during normal operation

Trap recommended for this type of application is Thermodynamic (T D). In this trap, condensate formation happens majorly due to the loss of heat from the pipe surfaces.

# > Thermodynamic (TD) Traps : A Description

Thermodynamic (T D) Steam Traps are characterized by their intermittent operational behaviour and are best suited for installation along Steam Headers.



Fig 5.11 : Thermodynamic Trap

Typical characteristics of the Thermodynamic (TD) Trap are :

- 1) Relatively smaller capacity as compared to other trap types
- 2) Intermittent operational characteristic (open shut open shut )
- 3) Robustness / adaptability to frequent change in pressure
- 4) Higher operational pressure bandwidth
- 5) Low weight, small size, and hence reduced surface heat loss
- 6) Lower investment cost
- 7) Simple mode of operation
- 8) Protection from cold and rainy climate through Isotub installation
- 9) Lower life cycle
- 10) Higher maintenance cost

The Process Traps differ in their function from that of Steam Header Line Traps in the sense that the condensate formation occurs in these traps as a result of heat transfer taking place between the steam and the user. Latent heat plays a major role in this operation and hence the quantity of condensate discharged will also be higher. Hence, these traps are normally build to handle higher quantum of condensate

The traps recommended for process applications are

Batch operation : Float Trap with Thermostatic Vent (TV)

Continuous operation : Float Trap with Steam Lock Release (SLR) provision
As far as the plant operation with respect to utility is concerned, the VAM Chiller shall be considered as intermittent operation

# Float Traps (FT) : A Description

Float traps are characterized by continuous operational behaviour. These traps work based on the difference in the density of steam and condensate. These are best suited for high condensate discharging processes both continuous and batch



Fig 5.12 : Float Trap

Typical characteristics of the Float Trap (FT) are as below :

- 1) Has a large capacity for its size
- 2) Higher surface heat loss due to larger size. (These traps shall perennially be flooded with condensate thereby the effect of heat loss is not felt much ).

- 3) Continuously discharges condensate at a temperature matching the saturation temperature
- 4) Can handle light to heavy condensate loads equally well
- 5) Not affected by wide and sudden fluctuations in the condensate discharge rates
- 6) Ability to discharge air freely when fitted with automatic air vent
- 7) Resistant to water hammering
- 8) The versions that have a Steam Lock Release (SLR) valve are the only type of traps entirely suitable for use where steam locking occurs (the SLR model is suitable for continuous process operations)
- 9) Performs better with SLR + Thermostatic Vent

Thus, the trap selection of the plant shall be like this :

No	Location	Туре
1	Steam Distribution Header Lines	ΤD
2	Process	Float

#### Table 5.12 : Steam Trap Type : Recommended Recommended

#### 5.6.3 Steam Traps - A Diagnosis

- A diagnostic study on steam traps was carried out to understand the working status of the traps and the type of fault / defect encountered, if any, in these traps
- Remedial measures have been suggested for setting right the non performing traps

### 5.6.4 Functionality Check – Methodology Adopted

Thermal imaging is used as the diagnostic tool for establishing the functionality of steam trap i.e., the inlet and outlet temperature measurements are made use of

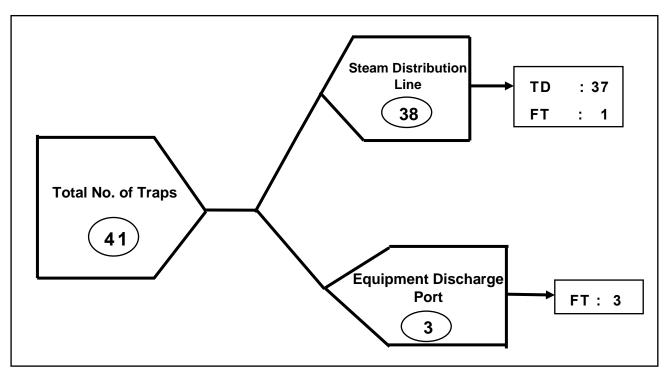
For a working trap, the steam inlet temperature shall be close to the saturation temperature corresponding to the steam pressure. Refer Table 5.13 for details

No	Steam Pressure	Steam Pressure	Trap Inlet T	emp. Range °C
NO	Category	kg / cm²(g)	T _{min}	T _{max}
1	Steam Header	26	210	240
2	HP	8.5	160	185
		4.5	155	135
3	LP	3.5	145	130
		1.5	120	105

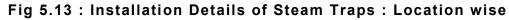
Table 5.13 : Trap Inlet Temperature – A function of Steam Pressure

- Trap outlet temperature shall correspond to the saturation temperature of the back pressure acting on the discharge side of the traps that are hooked on to the condensate recovery system
- This temperature shall be near to 100 °C for the traps that drain condensate to the ground and that connected to recovery system should be having a temperature corresponding to saturation temperature
- Visual / sound based observations would also give an indication on the functionality of steam traps.

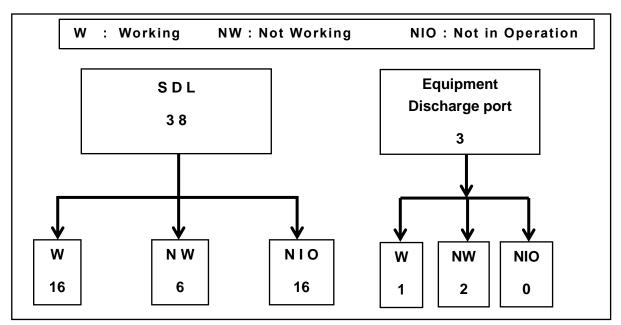
[For example, a Motor boating Trap - a trap that does not operate in the regular "Open - shut - Open - Shut" fashion any longer - can be identified by the fluttering / pulsating / quivering sound of operation synonymous with the sound a motorboat makes. This can be recognized through visual / sound based inspection of the steam trap discharge pattern.]


Thus, the functionality of steam traps was established through **Visual / Sound** based inspection and through the **Thermal Profile** across the trap.

**Note:** Motor boating of trap can be identified only through sound - based observation as temperature profile of normal and motor boating trap is similar


### 5.6.5 Survey Outcome

### 5.6.5.1 Installation Break-up Location wise : Overall


- 41 steam traps installed in the utility side of plant have been surveyed
- The installations are grouped into two major areas as per the locations of installation :
  - (i) Steam Distribution Line [ S D L ]
  - (ii) Equipment Discharge Port



The installation details w.r.t the above classification is as below :

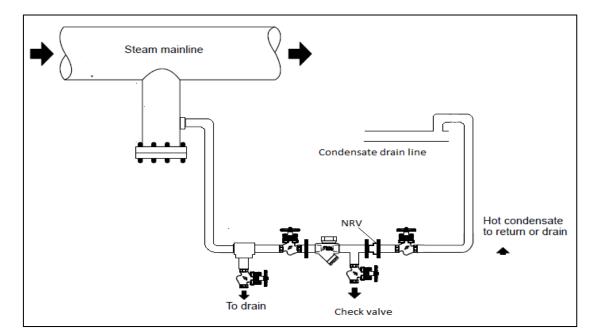


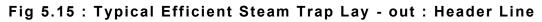
> Functional status of these traps is given below in Fig 5.14



# Fig 5.14 : Trap Functionality Status : A Schematic Representation

- As far as SDL is concerned, only 6 traps were not working out of 38 (15.8%)
- In case of Equipment Discharge Port, 2 traps out of 3 were not working


#### 5.6.5.2 Observations & Comments


- All the traps used in SDL are TD traps (except one) which is the correct choice .Float traps are used where there is an exceptionally high condensate discharge. In the present case, the trap selection is alright .
- All the traps used in Equipment port is F T trap which is also a correct choice.
- The problems identified with the non working TD traps are minor in nature and hence can be set right internally during Preventive Maintenance (PM) activity.
- The flaws noticed in the operation of steam traps are
  - 1. Live Steam Passing : 2 Nos
  - 2. Motorboating : 1 No
  - 3. Slow Condensate Discharge : 3 Nos (2 in Equipment and one in SDL)
  - 4. Cold Trap : 2 Nos

All the issues but for Slow Condensate Discharge is observed in the SDL

- The common problems observed during the audit of steam trap are as follows:
- a) Out of the 41 trap audited, 20 traps do not have any condensate recovery option which accounts for the 48.8 % of the total trap in the utility. This non – recovery is a significant loss with respect to heat recovery and water conservation
- b) Most of traps which are supposed to have threaded joints are installed using welded connection which in long run makes it difficult for maintenance. Hence, we recommend going with compact model trap or trap with swappable seating and disk
- c) The insulation to the T D trap is nearly non existent. This can lead to higher condensate discharge than anticipated
- d) The trap should not be closed in any of the line as this can cause water hammering as well as steam hammering .This can significantly damage the steam line. All the non working traps shall be either dummied or the valve to the traps are closed

- e) Ensure the traps are installed at every 20 to 30 m gap and at the location where there is a change in direction like bends, risers etc. The condensate return line should have an NRV
- f) The correct installation of steam trap is as given below in Fig 5.15





Thermographic images of Faulty Steam Traps - numbering 8 - are presented below :

```
Table 5.14 : Not Performing / Faulty Traps
```

# 1) Live Steam Passing - 2 Nos

No	Location	Thermal Image	Remarks
1	Near VAM Header L P line	151.7	Steam passing to a minor extent Exit Temperature is slightly higher

No	Location	Thermal Image	Remarks
2	Near VAM Header HP line		Steam passing to a minor extent. Exit Temperature is slightly higher

# 2) Motor Boating - 1 No

No	Location	Thermal Image	Remarks
1	H P Steam Opposite to Chiller Plant		Frequent clicking noise observed in the trap

# 3)Slow Condensate Discharge - 3 Nos

No	Location	Thermal Image	Remarks
1	VAM Chiller Steam Trap LP line -2 Nos		Inlet Temperature is lower

No	Location	Thermal Image	Remarks
2	Boiler Header	10 <u>6</u> 3 205.3	Lesser Inlet Temperature than the recommended range
3	Deaerator PRS Outlet		Lesser Inlet Temperature

# 4) Cold Trap - 2 Nos

No	Location	Thermal Image	Remarks
1	HP PRS Inlet	100.3 60.3	Inlet & Outlet Temperature: Low

No	Location	Thermal Image	Remarks
2	IP PRS Inlet	6 <u>4.8</u>	Outlet Temperature is way below 100 °C

#### 5.6.6 Sum - up

- About 20 % of the traps need corrective action
- All attempts shall be made to rectify the faults and keep the traps in working condition.
- As a whole, the performance of the plant from steam trap perspective is decent but not great

# 5.7 THERMAL INSULATION OF UTILITIES

### 5.7.1 Introduction

- The steam line insulation survey throws light on the quantum of recoverable heat that is lost to the ambient because of bare / exposed / uninsulated hot pipe surface, flanges, joints, valves, etc.,
- A thermo mapping survey had been undertaken on the hot surfaces associated with steam Flow / condensate return
- Thermo mapping has been done on 28 locations identified in the steam / condensate lines
- In majority of the places, it has been noticed that insulation is either damaged or not provided at all
- As it is obvious that lack of insulation would result in energy loss, an attempt was
  made to estimate the energy loss that is likely to occur from these places and the
  economics of redoing / laying the insulation

# 5.7.2 Locations Identified : Hot Surfaces:

• The locations identified along with the temperature recorded are tabulated below

No	Location	Temp °C	Image	Remark
1	Header to Turbine - near U bend	220	31.0 -224.8 -200 -180 -160 -140 -120 -100 -80 -60 -40 -29.1 °C	
2	Header to Turbine U bend ( before and after Turbine)	220	36.7 228.2 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 232.7 200 -200 -180 -160 -120 -100 -100 -100 -100 -100 -100 -10	Insulation Damaged
3	Vertical Line ( from Boiler PRV station)	220	205.3 18.1 205.3 18.1 205.3 205.3 18.1 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 205.3 20.	
4	Turbine Inlet Separator	220	43.7 °C	No Insulation

Table 5.15 : Hot Surfaces Identified

No	Location	Temp °C	Image	Remark
5	Turbine Inlet : 6" ∳ line ( After Separator )	220	40.2 232.7 40.2 223.6 40.2 223.6 180 160 140 120 100 80 -60 38.3 °C 2220 -220 -200 180 -160 -140 -120 -100 -80 -60 -38.3 °C -220 -200 -180 -140 -140 -120 -100 -80 -60 -38.3 °C -200 -180 -100 -80 -60 -220 -100 -80 -60 -220 -100 -80 -60 -220 -100 -80 -60 -220 -100 -80 -60 -220 -100 -80 -60 -220 -200 -100 -80 -60 -200 -180 -160 -140 -120 -100 -80 -60 -220 -200 -180 -160 -140 -120 -100 -80 -60 -200 -180 -160 -140 -120 -100 -80 -60 -200 -180 -160 -140 -120 -100 -80 -60 -200 -180 -160 -140 -120 -100 -80 -60 -140 -120 -100 -80 -60 -140 -120 -100 -80 -60 -140 -120 -100 -80 -60 -140 -120 -100 -80 -60 -140 -120 -100 -80 -60 -140 -120 -100 -80 -60 -140 -120 -100 -80 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -60 -225 -70 -205 -70 -205 -70 -205 -70 -205 -70 -205 -70 -205 -70 -205 -70 -205 -70 -70 -70 -70 -70 -70 -70 -70	
6	Before Turbine Inlet : Condensate Recovery Line	65	46,5 46,5 24,8 24,8 24,8 46,5 24,8 46 57 48 48 42 -36 -30 -24,2 °C	No Insulation
7	After Turbine Header	180	29.9 -180 -160 -140 -120 -100 -80 -60 -40 -28.3 °C -174.7 -160 -140 -120 -100 -80 -60 -40 -28.3 °C	

No	Location	Temp °C	Image	Remark
8	After PRV	164	30.9 46.2 162.8 *C	
9	After PRV	115	30.9 46.2 169.8 *C	Insulation Damage
10	After PRV H P Line Rack 1	170	11.1+ 165.7 17 <u>1</u> 6 -173.3 -160 -140 -120 -100 -80 -60 -40 -20 -9.7 °C	
11	After PRV HP Line Rack 2	170	2.7 39.6 31.2 2.7 30.9 30.9 30.9 32 22 23 24 20 16 12 8 2.4 °C °C	Insulation damaged

No	Location	Temp °C	Image	Remark
12	Condensate Line HP line (Eq no : MSST 2182 )	264	256.1 256.1 106.1 200 -210 -180 -150 -120 -90 -60 -30 -0.1 °C	damaged
13	Condensate Line HP line (Eq no : MSST 2182)	100	50.7 50.7 30.0 30.0	Insulation
14	LP Steam – Line U bend	147	19.6 ⁺ 174.1 174.1 170.1 *C	
15	HP Line PRV : ( Eq no : MSST 2163)	170	20,1 165.1 17,3 17,3 17,3 17,3 17,3 17,68 -160 -140 -140 -120 -140 -140 -120 -140 -140 -140 -140 -140 -140 -140 -120 -140 -140 -140 -140 -187 °C	No insulation
16	Condensate Storage Tank : PPPU pump	140	105.2 105.2 107.1 31.7 * * * * * * * * * * * * *	

No	Location	Temp °C	Image	Remark
17	Condensate Storage Tank : PPPU	150	104.3 -98 -91 -84 -77 -70 -63 -56 -49 -42 -35 -31.1 °C	No insulation
18	Condensate Area : PPPU	140	-2.3 -2.3 -2.3 -153.4 -140 -120 -100 -80 -60 -40 -20 -3.8 °C	Insulation damaged
19	Condensate Line	140	35.2 109.2 1112.1 - 104 - 96 - 88 - 80 - 72 - 64 - 56 - 48 - 40 - 34.6 °C	No insulation
20	HP Steam Line (opposite to Chiller plant)	160	18.6 175.9 170.7 170.7 170.7 170.7 170.7 170.7 170.7 *C	No insi
21	Condenser HP line	100	104.5 25.5 105.9 105.9 105.9 C	Insulation damaged

No	Location	Temp °C	Image	Remark
22	Condensate Line near VAM Chiller	125	60.7 -0.5 -0.5 -0.5	damaged
23	Near DM plant : Back side of the Air Compressor	105	30.7 34.8 100.0 34.8 100.0 -56 -49 -63 -56 -49 -42 -35 -30.0 °C	Insulation
24	VAM Chiller Trap Line	105	108.9 16.4 16.4 °C	No insulation
25	VAM Chiller : Heat Exchanger	150	33.6 108.2 108.2 113.1 -104 -96 -88 -80 -72 -64 -56 -48 -40 -32.9 °C	Insulation damaged
26	Old PRV Header	148	143.6 -130 -120 -110 -100 -90 -90 -90 -90 -90 -90 -90 -90 -90 -	No Insulation

No	Location	Temp °C	Image	Remark
27	Boiler opposite : Condensate Line ( From MSST 2220 )	100	27.2 108.7 ⁺ 104 96 88 80 -72 -64 -56 -48 -40 -32 -26.5 °C	lation
28	High Vacuum Header Line	170	187.0         -190.4           187.0         -150           110         -130           -120         -110           -100         -90           -80         -70           -60         -45.5	No Insulation

### 5.7.3 Observations & Comments

- It was observed that the temperatures recorded on these bare surfaces or insulation damage surfaces are invariably 125°C
- In a couple of locations in the boiler area, the surfaces temperatures had gone as high as 220 °C
- An estimate had been made on the heat lost due to these, having recorded not only the surface temperatures but also the corresponding opened up surface area
- The heat loss is estimated to be 2.5 tph of steam equivalent which is more than 10 % of the steam generation. This detail on energy savings is explained in Chapter 11

# 5.7.4 Location identified : Cold Surfaces

- A thermal mapping has been carried out in the cold surfaces also as it has been noticed that the insulation is either missing or damaged in a couple of locations
- 16 such locations have been identified and listed below :

No	Insulation	Temp °C	Image	Remark
1	Near VAM Chiller : Methanol Tank pump	1	<b>62.5</b> <b>56</b> <b>49</b> <b>42</b> <b>30.9</b> <b>42</b> <b>35</b> <b>28</b> <b>21</b> <b>14</b> <b>7</b> <b>0</b> <b>4.8</b> <b>*C</b>	llation
2	Near VAM Chiller : Methanol Tank Header	1	-4.9 -4.9 -9.3 -9.3 -0 -10 -0 -10.4 °C	No insulation
3	Near VAM Chiller : Methanol Tank Header	1	6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3	Insulation Damaged
4	Near VAM Chiller : Methanol Tank Bottom Header	1		_

Table : 5.16 : Cold Surfaces Identified

No	Insulation	Temp °C	Image	Remark
5	Chiller I B U - 2 : Chiller End Cap	2	0.9 2.0 + C	Damaged
6	Chiller Area Chiller Evaporator	18	19.6 9.7 °C	Insulation
7	I B U - 1 : Process Pump	6	7,1 7,1 48,3 48,3 44 -44 -40 -36 -32 -28 -24 -24 -20 -16 -12 -8 -44 -20 -16 -12 -8 -44 -20 -16 -12 -8 -44	Damaged
8	IBU - 1 : Chiller Water Line to Pump	20	5.9 ⁺ 48.5 19.7 19.7 -28 -24 -20 -16 -12 -38 -5.5 -5.5 °C	Insulation
9	Chilled Water Tank (U M S T - 2147)	6	9.6 9.6 9.6 -50 -45 -40 -35 -30 -25 -20 -15 -10 -6.5 °C	No insulation

No	Insulation	Temp °C	Image	Remark
10	Pharma Chiller : ( U C C H :2022): Chiller End Cap	-3.3	-3,9 -3,9 16,8 -32 -32 -32 -32 -32 -28 -24 -20 -16 -12 -8 -4 -0 -4.3 °C	Damaged
11	Pharma Chiller : ( U C C H : 2022 ): Chiller Surface	1	51.5 19.2 28.1 28.1 -39 -36 -33 -30 -27 -24 -21 -18.9 °C	Insulation
12	Pharma Chiller : ( U C C H : 2022 ) : Chiller Outlet Pipe	14.2		insulation
13	U C C H : 2018: Chiller End Cap	-4.2	-5.0 -4.2 -4.2 -5.0 -5.0 -5.0 -32 -28 -24 -20 -16 -12 -8 -4 -0 -5.4 °C	No insu
14	U C C H : 2018: Chiller Evaporator	15.8	3.7 15.9 3.7 3.7 •C	Insulation Damaged

No	Insulation	Temp °C	Image	Remark
15	U C C H : 2018: Chiller Compressor	-3.6	9,7 9,7 3,9 -16 -12 -8 -4 -0 -4.3 °C	Insulation Damaged
16	U C C H: 2022: Chiller Inlet Pipe	20.3	-3.6 -1.9 -3.6 -1.9 -3.6 -1.9 -42 -35 -28 -21 -14 -7 -0 -4.2 -35 -28 -21 -14 -7 -0 -4.2 -35 -28 -21 -14 -7 -7 -0 -4.2 -35 -56	No insulation

# 5.7.5 Observations & Comments

- Thermal energy due to lost to ambient due to the exposure of cold surfaces had been estimated having recorded both the temperatures as well the exposed surface area
- The energy lost has been computed to be equivalent to 10 TR which is significant if not high
- The energy lost due to cold surface areas gets accounted in the electrical energy consumption and hence expensive economically
- Therefore, it is recommended to attend to this "cold surface exposed" and set them correct

# 5.7.6 Overall Sum - up

- A detailed thermo mapping carried out on the hot / cold surfaces had revealed the "loss of energy" to an extent of 2.5 tph of steam equivalent from hot surfaces and 10 TR equivalent of refrigeration from cold surfaces
- Hence, it is recommended to attend to these and bring down the energy loss to the extent possible by way of insulating these surfaces effectively

# 6 ELECTRICAL DISTRIBUTION SYSTEM : FACITLTY DESCRIPTION &

# STUDY OUTCOME

### 6.1 INTRODUCTION

- The main source of electricity to the plant is from Puducherry Electricity Department (PED) at 22 kV grid supply from Kalapet substation. This is then stepped down to 433 V in the 5000 kVA main step down transformer of the plant
- The schematic of EB distribution system is shown in Fig 6.1

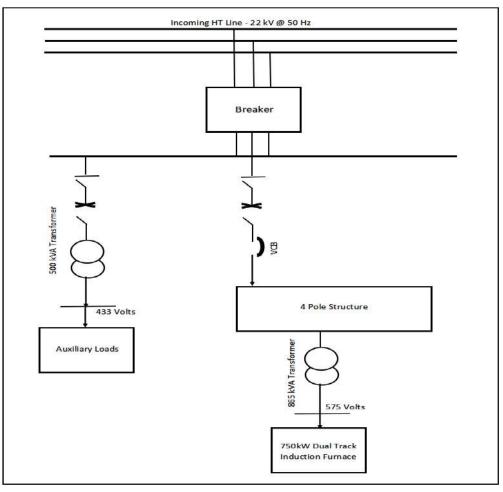



Fig 6.1 : E.B Distribution System : Existing

- All the utilities and production related equipments are connected to this 5000 kVA main transformer
- The operating voltage is about 415.

# 6.2 HT SERVICE

- The plant has acquired / hired HT Service 22 kV under category HT I
- The service details are as below

No	Parameter	Value
1	Service Connection No	139
2	Circle	Rural / North
3	Sanctioned Demand kVA	3 860 kVA
4	Minimum Chargeable Demand	85 % of 3860
5	PT Ratio	22 kV / 110 V
6	CT Ratio	30 / 5 A
7	Multiplication Factor	1 000

Table	6.1	: HT	Service	Details
-------	-----	------	---------	---------

# 6.3 LOAD DISTRIBUTION

- The load distribution from the transformer to the Utility & Process Equipment happens through 3 Power Control Centres ( PCC ) panels
- The scheme of power distribution in practiced in the plant is as below :

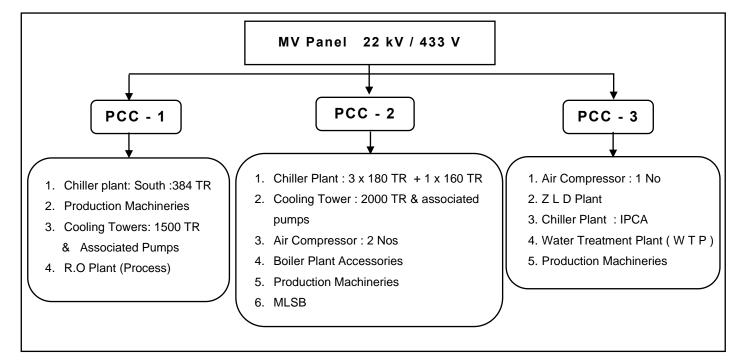



Fig 6.2 Electrical Load Distribution Scheme : Currently Practiced

• A quick estimate carried out on the load distribution pattern in the PCCs revealed the following :

No123LocationPCC 1PCC 2PCC 3Energy Share %403030

 Table 6.2 : Load Sharing Pattern in PCCs : Enumerated

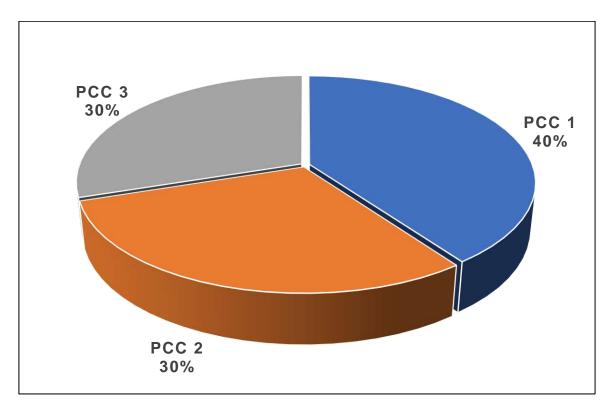



Fig 6.3 : Load Sharing Pattern in PCCs : As observed

 It can be observed that the load sharing in all the 3 PCCs is quite uniform, and it is appreciated

# 6.4 MV PANEL : OBSERVATION & ANALYSIS

 The plant is located farther away from the substation transmission system of PED in Kalapet. During the audit period, it was recorded that the HT voltage fluctuated between 19.5 kV to 22.4 kV and the corresponding Secondary Voltage from 404 - 420

- The tap setting was manually altered to 4th position from the existed 5th position and that could enable the receipt of secondary voltage around 405 - 415 V. Hence, it has been suggested to the plant personnel to currently follow this setting
- Electrical power data logging was carried out on the HT side of the EB mains for a period of 24 hrs [ 10:15 h on 9th till 10:15 h on 10th ]
- Energy consumption during this period was 76 620 kWh working out to an average load of **3190 kW**
- In reality, the power drawl ranged between 2891 kW & 3436 kW
- Average power factor recorded varies between 0.979 to 0.998
- The power drawl trend during the 24 h period is shown below in Fig 6.4

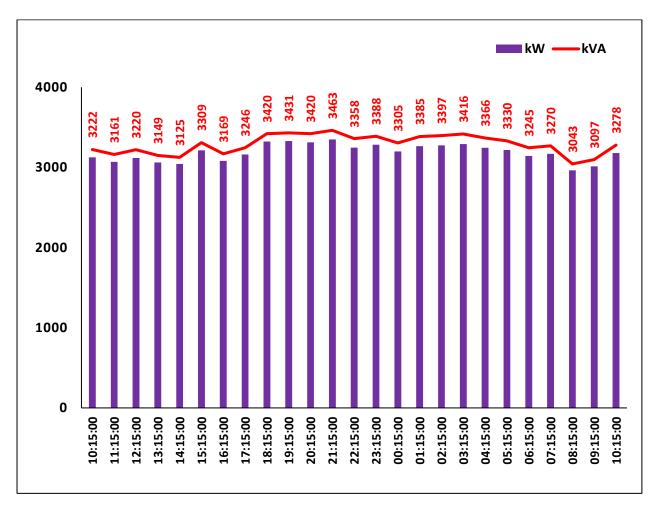



Fig 6.4 : Power Drawl Trend : Active & Apparent - HT Main

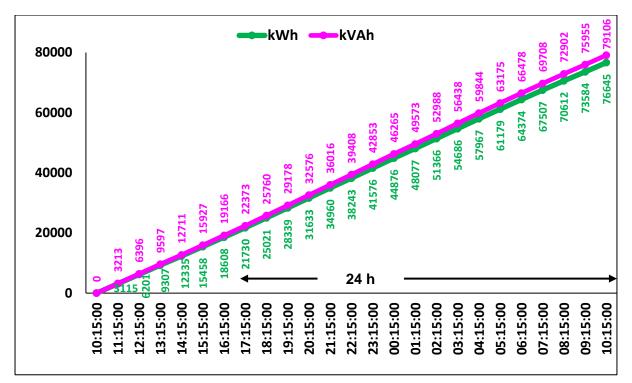
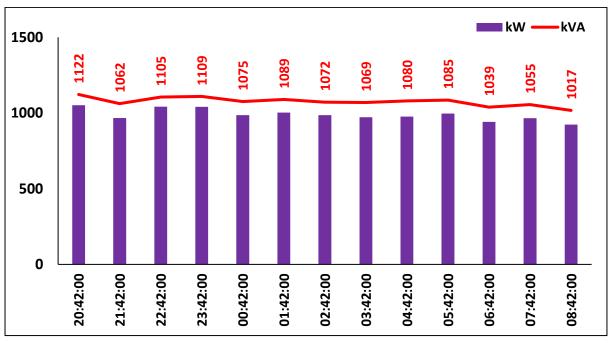
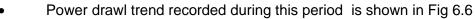
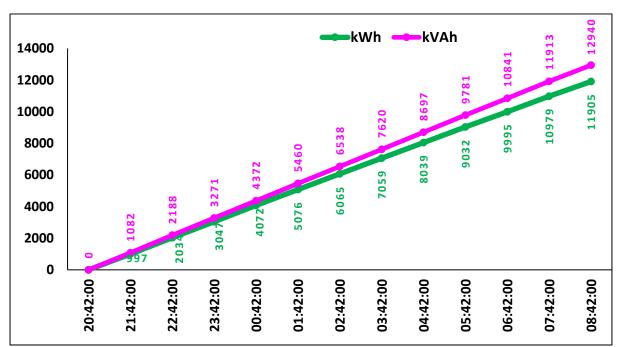


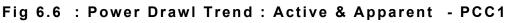

Fig 6.5 : Cumulative Power Drawl Quantity : Active & Apparent - HT Main

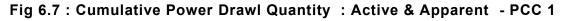
- The maximum and minimum kVA recorded are 3043 (08:15 h) & 3463 (21:15 h)
   respectively
- The instantaneous power data details captured are as below :


No	Deremetere	Unit	Phas	e Wise Va	alues		
No	Parameters	Unit	R	Y	В		
1	HT voltage 3 $\phi$	V	20.8	20.9	20.8		
2	HT Current 3 $\phi$	Amp	83.0 93.0 93.0				
3	Actual Power	kW	3151				
4	Power Factor	-		+ 0.977			
5	Apparent Power	kVA		3260			
6	Q1	kVAr	445	5 ( inductiv	ve)		
7	Voltage Harmonics	0/	1.7 - 1.8 [ norm : < 3 ]				
8	Current Harmonics	% 4.2 - 5.6 [ norm : <					


Table 6.3 : Instantaneous Power Data Captured : HT


At the time of data logging, the LT side voltage gone as high as 444 V ( $1 \phi$  V : 250) which will be detrimental to operation of plant motor. This excess voltage puts stress on the motors and might lead to their failure


# 6.5 PCC: 1 : OBSERVATION AND ANALYSIS


- Electrical power data had been logged for a period of 12 h 30 mins [ 750 mins from 20:45 h on 10th till 09:15 h on 11th ]
- Energy consumption during this period was 12 390 kWh working out to an average load of 990 kW











- The maximum and minimum kVA recorded are **1017** (08:42 hrs) & **1122** (20:42 hrs)
   respectively
- The instantaneous power related data captured are tabulated in Table 6.4

**Phase Wise Values** No **Parameters** Unit Υ R В V 1 428.7 Voltage 3  $\phi$ 430.6 428.1 V 2 Voltage 1 o 248.6 247.3 247.1 3 HT Current 3  $\phi$ 1522 1578 1456 Amp 4 **Actual Power** kW 1043 5 Apparent Power kVA 1118 6 Power Factor 0.936 -7 Q1 kVAr 390 (inductive) 2.4 - 2.6 [ norm : < 3 ] 8 **Voltage Harmonics** % **Current Harmonics** 9 % 13.0 - 16.1 [ norm : < 8 ]

Table 6.4 : Instantaneous Power Data Captured : PCC 1

• Secondly, the current harmonics had exceeded the norms prescribed.

• These two aspects shall be given priority and rectified

# 6.6 PCC 2 : OBSERVATIONS & ANALYSIS

- As far as PCC 2 panel power data capture is concerned, it went on for 14 h 10 mins [ 850 mins from 19 :05 h on 10th till 09:15 h on 11th ]
- Energy consumption during this period was 17 410 kWh which is equivalent to an average drawl of 1230 kW
- Power drawl trend recorded is shown in Fig 6.8

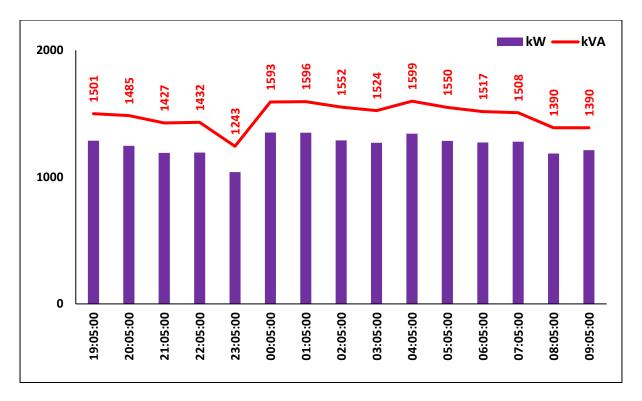



Fig 6.8 : Power Drawl Trend : Active & Apparent - PCC 2

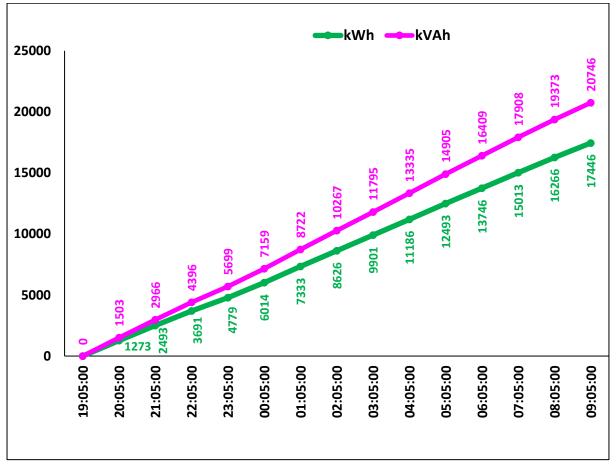
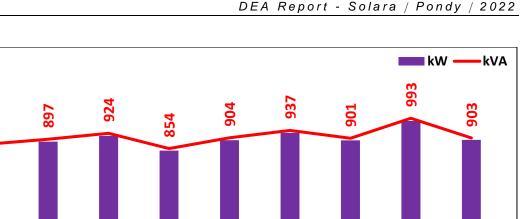
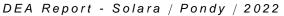



Fig 6.9 : Cumulative Power Drawl Quantity : Active & Apparent - PCC 2

- The minimum and maximum kVA recorded were **1243** (23:05 h) & **1599** (04:05 h) respectively
- The instantaneous power related data recorded are given in Table 6.5


 Table 6.5 : Instantaneous Power Data Captured: PCC 2


	<b>D</b>		Phase Wise Values					
No	Parameters	Unit	R	Y	В			
1	Voltage 3 $\phi$	V	414.4	418	411.6			
2	Voltage 1 $\phi$	V	236	237	234			
3	HT Current 3 $\phi$	Amp	1989 2216		2052			
4	Actual Power	kW	1283					
5	Apparent Power	kVA		1486				
6	Power Factor	-		0.857				
7	Q ₁	kVAr	75	759 ( inductive )				
8	Voltage Harmonics	%	2.1 - 2.7 [ norm : < 3		< 3 ]			
9	Current Harmonics	70	3.4 - 4.6 [ norm : < 8 ]					

In this PCC - 2 panel, the major observation was the marginally higher value for 1¢ voltage. All other parameters were found to be quite normal and fell within the stipulated limits.

# 6.7 PCC 3 : OBSERVATION & ANALYSIS

- The power data was logged for a time duration of 7 h 50 mins [ 470 mins from 10:30 h to 18:20 h on 11th ] and the corresponding energy consumption was 6981 kWh. This equals to an average load of 890 kW
- Power drawl trend recorded is shown in Fig 6.10





16:29:00

17:29:00

18:11:00

Fig 6.10 : Power Drawl Trend : Active & Apparent - PCC 3

15:29:00

14:29:00

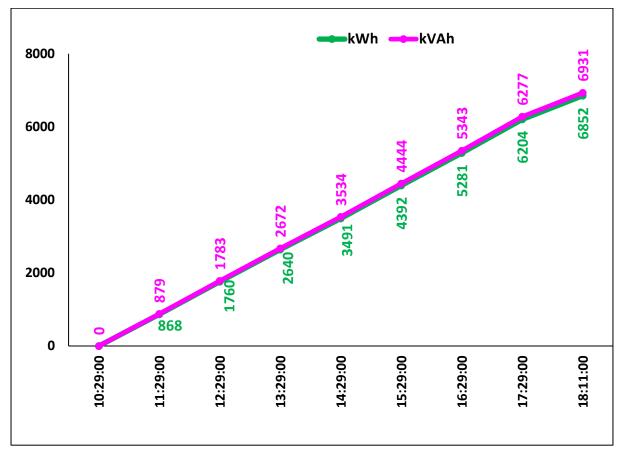



Fig 6.11 : Cumulative Power Drawl Quantity : Active & Apparent - PCC 3

874

10:29:00

11:29:00

12:29:00

13:29:00

1000

500

0

• The minimum and maximum kVA recorded were **854** (13:24 h) & **993** (17:29 h) respectively

•	The instantaneous p	ower related o	data recorded	are given in Tab	ole 6.6
---	---------------------	----------------	---------------	------------------	---------

Table 6.6 : Instantaneous Power Data Captured : PCC 3

No	Parameters	Unit	Phase Wise Values				
NO	Falameters	onit	R	R Y			
1	Voltage 3 $\phi$	V	405	407	409		
2	Voltage 1 $\phi$	V	236.3 235.8 231.2				
3	HT Current 3 $\phi$	Amp	1 205 1 170 1 289				
4	Actual Power	kW	865.3				
5	Apparent Power	kVA		866.1			
6	Power Factor	-		0.996			
7	Q ₁	kVAr	129.1 ( inductive )				
8	Voltage Harmonics	%	2.7 - 3.5 [ normal : < 3 ]				
9	Current Harmonics	/0	3.4 - 4.6 [ normal : < 8 ]				

• But for the harmonics, all other instantaneous parameters recorded were quite acceptable

• Both the voltage harmonics & current harmonics have exceeded the norm to a minor extent. This may be made note of for correction

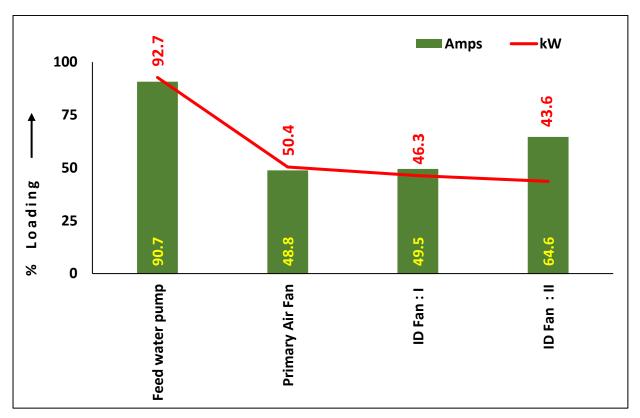
#### 6.8 SUM UP

- Thus, this chapter made a presentation on the existing electrical distribution system, load distribution to the utilities & process machineries and also the power drawl trend which was recorded for a longer duration
- Th conclusions drawn are
  - > The load distribution was near uniform amongst PCC 1,2 & 3
  - In PCC 2, harmonics level recorded had exceeded the stipulated norm and that could be the effect of many VFD operated motors attached to it.
  - As a whole, nothing adverse had been noticed / recorded as far as power distribution scheme is concerned

# ELECTRICAL MEASUREMENTS ON MOTORS - AN ANALYSIS

### 7.1 INTRODUCTION

- A detailed analysis is made in this chapter on the electrical energy consumption pattern of motors connected to various utilities
- The electrical measurements on the motors were logged for a period of **15 30** mins to establish a correct and replicable power consumption trend
- This longer duration power logging had eliminated the possible ups & downs in the power drawl pattern of the motors and ensured the reliability of measurements recorded
- This exercise of motor load estimation has been undertaken as a part of the energy consumption observation action as it is well understood that lesser the motor loading, lower is the operating efficiency and the power factor and therefore higher is the power consumption for the given product output
- It has to be noted that poor loading of motors can result in higher drawl of current, thus
  reducing the lifetime of motor winding. This is to say that the kW loading of motors also at times can prove a very relevant factor not only from energy drawl point of view
  but also from the lifetime operation point of view
- Hence, it was decided to record the power loading and energy consumption pattern of motors and thereby look for corrective action as well energy conservation opportunities


# 7.2 BOILER SECTION : FORBES BOILER ( 4 MOTORS )

- There are 4 motors in operation in boiler section at the time of study and a loading study has been undertaken in all these 4 motors attached to Forbes Vyncke boiler
- The outcome of the study is as follows

		Ra	Rated Parameters				Measured Parameters				% Loading	
No	o Motor I D V	Volt s	Amps	kW	n %	Volts	Amp	PF	kW	Amps	kW	
1	Feed Water Pump	415	82	45	91.5	391	74.4	0.92	45.6	90.7	92.7	
2	Primary Air Fan	415	82	45	91.8	391	40	0.92	24.7	48.8	50.4	
3	I D Fan : I	415	210	112	94.0	354	104	0.84	55.2	49.5	46.3	
4	I D Fan II	415	158	90	93.5	393	102	0.85	42	64.6	43.6	

### Table 7.1 : Motor Loading Measurements : Boiler Section : Forbes Boiler

# • The loading pattern of all these 4 motors has been shown pictorially in Fig 7.1



# Fig 7.1 : Motor Loading Pattern : Boiler Section : Forbes Boiler

- The major inference is that the loading is lesser in all the motor except that of Feed Water Pump. The primary reason is that the motors of these utilities are fitted with VFD and operating in the frequency range of 35 - 40 Hz. Thus, the lower loading on these motors
- The Feed Water Pump is loaded to 90 % and above on both ampere and kW front
- This aspect shall be made note of as this higher loading is detrimental to motor life

# 7.3 MOTORS : COOLING TOWER PUMPS (10 MOTORS)

- Electrical measurements have been recorded on 10 motors of various cooling tower
   pumps
- The break up is as below :

No	Cooling Tower Identity	No. of. Motors
1	500 TR	1
2	1 500 TR	3
3	1 500 TR	3
4	2 000 TR	3
	Total	10

• The electrical measurements recorded are tabulated below :

# Table 7.2 : Motor Loading Measurements : Cooling Tower Pumps

No	Motor I D	Rate	Rated Parameters				Measured Parameters				% Loading												
No		Volts	Amps	kW	n %	Volts	Amp	PF	kW	Amps	kW												
	I - 500 TR Cooling Tower																						
1	Pump No : 1	415	90	55	93.8	415	75	0.88	48	83.3	81.9												
II - ZLD Plant																							
1	Pump No : 1					390	79	0.87	41	87.7	69.9												
2	Pump No : 2	415	415	90	55	93.8	387	77	0.84	43	85.6	73.3											
3	Pump No : 3					384	75	0.92	42	83.3	71.6												
			III – I	Proc	ess (	CT : 1	500 TR																
1	Pump No : 2	415	415	415	415	415	415											418	80.1	0.8	46.6	89.0	79.5
2	Pump No : 3							90	55	93.8	411	79.0	0.81	46.0	87.8	78.5							
3	Pump No : 4					408	99.0	0.90	65.0	110.0	110.9												
			IV - F	Proc	ess (	CT:20	000 TR																
1	Pump No : 1		52	30	91.2	399	36.0	0.73	25.0	69.2	76.0												
2	Pump No : 2	415	90	55	93.8	370	87.1	0.90	51.0	96.8	87												
3	Pump No : 3		52	30	91.2	395	28	0.91	15.0	53.8	45.6												

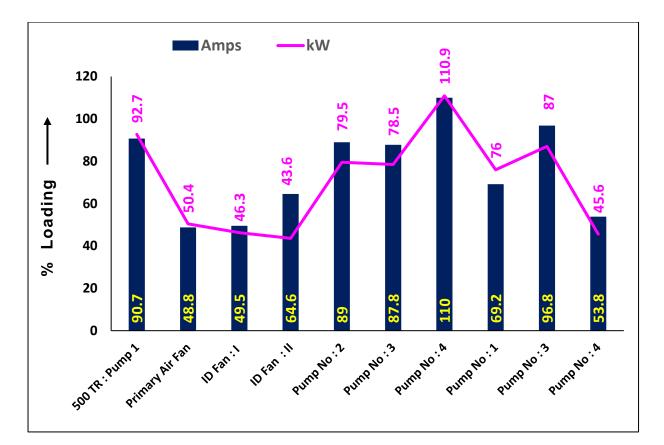



Fig 7.2 : Motor Loading Measurement : Cooling Tower Pumps

- It is heartening to note that 8 out of 10 pumps are properly loaded on the electrical front : it is appreciated
- Pump No 4 of Process Cooling Tower [1500 T R] has recorded a % loading exceeding
   100 both on ampere front & kW front . Thus, it appears that the coil of this motor had
   undergone rewinding multiple times. This needs investigation
- On the other hand, Pump No : 3 of Process Cooling Tower (2000 T R) is lowly loaded to around 50 % (both Ampere and kW front) This aspect may be made note of.

# 7.4 MOTORS : COOLING TOWER FANS ( 9 MOTORS )

- There are 9 Cooling Tower Fans identified and electrical measurements have been recorded on all these.
- The details of measurements recorded and computed are Tabulated below :

Ν	Matax ID	Rat	ted Para	amete	rs	Meas	sured Pa	aramet	ers	% Loading	
ο	Motor ID	Volts	Amps	kW	n %	Volts	Amp	PF	kW	Amps	kW
	Cooling Tower : 500 TR										
1	Fan	415	14	7.5	90.4	401	6	0.87	3.0	42.9	36.2
	Cooling Tower : 1500 TR - ZLD										
1	Fan - 1	415	20	22	91.2	390	25	0.82	13.0	64.1	53.9
2	Fan - 2	415	39	22	91.2	389	26	0.85	13.3	66.7	55.1
	Cooling Tower : 1500 TR - Process										
1	Fan : East : VFD	415		22	91.2	401	11	0.89	6.9	28.2	28.6
2	Fan : West : VFD	415	39			401	12	0.89	7.1	30.8	29.4
		Co	oling	Towe	er:2(	)00 TR	- Pro	cess			
1	Fan 1: with VFD					399	25	0.75	13.0	64.1	53.9
2	Fan 2: with VFD	445	20	22	01.0	400	16	0.93	10.0	41.0	41.5
3	Fan 3: with VFD	415	39	22	91.2 -	396	13	0.50	5.3	33.3	22.0
4	Fan 4: with VFD					400	12	0.61	7.8	30.8	32.3

# Table 7.3 : Motor Loading Measurement : Cooling Tower Fans

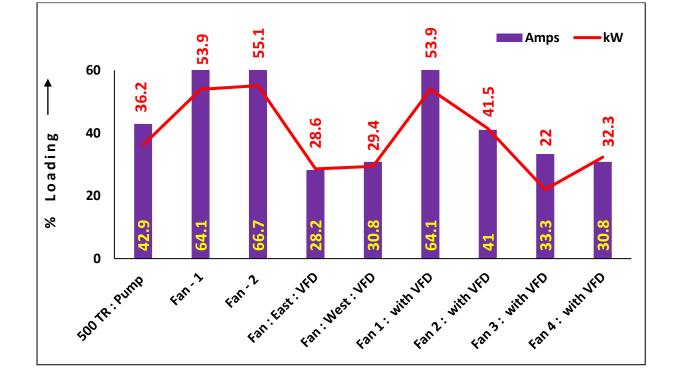



Fig 7.3 : Motor Loading Measurement : Cooling Tower Fans

- The motor of CT Fan ( 500 TR ) had shown a low loading of around 40 % only. This motor is not fitted with VFD
- The loading is reasonable in the cooling tower fans of ZLD section although it is not optimum
- The fans of 1500 TR & 2000 TR (Process) cooling towers have shown a lesser % loading as they are all fitted with VFD and operating at 35 Hz (1 500 TR) and 42 Hz (2 000 TR) frequency
- It was noticed that the Fan 1 of 2000 T R Cooling Tower is not fitted with VFD and hence recorded a higher % loading on amps (64.1%) and power (53.9%). All other motors that are fitted with VFD have shown a load of 40% or less.
- This clearly indicates that the Cooling Tower fan motors are oversized for the duty intended and fixation of VFD would make them operate an optimized fashion on energy

# 7.5 MOTORS : CHILLER PLANT PUMPS (9 MOTORS)

 9 pumps come under this classification and the electrical study outcome is presented below:

Table 7.4 : Motor Loading Measurement :	Chiller	Plant Pumps
-----------------------------------------	---------	-------------

No	Motor ID	Ra	ited Para	ameter	rs	Measured Parameters				% Loading	
NO	MOTOR ID	Volts	Amps	kW	ղ %	Volts	Amp	PF	kW	Amps	kW
	I IBU Chiller Plant										
1	Pump 1 : West				55 93.8	416	80	0.93	43.0	72.0	73.3
2	Pump 2 : Aldehyde	415	90	55		421	76.7	0.78	43.8	69.0	74.7
3	Pump 3 : East					421	85.7	0.84	50.3	77.1	85.8
	II Chiller pump near Mechanical Storeroom										
1	Pump	415	33	18	90.6	398	4.9	0.64	2.6	14.8	13.1
			111	IPC	A Tov	wer Pu	mp				
1	Pump : West	415	66	27	37 91.2	402	58	0.90	34	87.9	83.8
2	Pump : East	415	00	57		403	60	0.89	37	90.9	91.2
			I	V C	Chille	r Plan	t				
1	Pump		81	45	92.2	401	63	0.90	39.0	77.8	79.9
2	Brine Pump	415	90	55	02.0	414	74	0.87	46.0	82.2	78.5
3	Brine Pharma				93.8	408	85	0.84	50.2	94.4	85.6

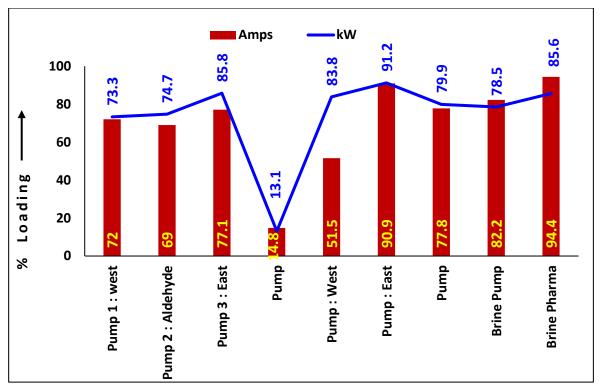



Fig 7.4 : Motor Loading Pattern : Chiller Plant Pumps

- These pumps have not been fitted with VFD and the kW loading is quite optimal in the range of 75 % + in almost all motors
- The IPCA Tower pump is quite poorly loaded at less than 15 % .This is abysmally low, and the root cause has to be identified

# 7.6 SUM UP

- In essence, it was observed that majority of the motors are loaded effectively / optimally barring a few
- The motor that are lowly loaded have been identified and commented upon.
- The cause for this low % loading has to be interrogated and remedial action carried out
- Majority of the motors are fitted with VFD which is an indicator of Encon Activities initiated by the plant personnel. This is appreciated



# PERFORMANCE STUDY

# ΟΝ

# ELECTRICAL UTILITIES

### 8.1 INTRODUCTION

- In this chapter, an attempt is made to evaluate the performance level of various utilities of the plant. This exercise is expected to indicate the ways to achieve reduction in the energy consumption in these utilities wherever possible
- The Utilities in the plant can be grouped into 6 categories as listed below
  - > Transformer
  - Capacitor Banks
  - > Air Compressors
  - Cooling Towers
  - Pumping System
  - Fans and Blowers
- Various parameters measured, analysed and the ultimate outcome in terms of performance are detailed and discussed in this chapter
- The performance evaluation of chiller systems has been presented separately in Chapter No : 10

#### 8.2 TRANSFORMERS

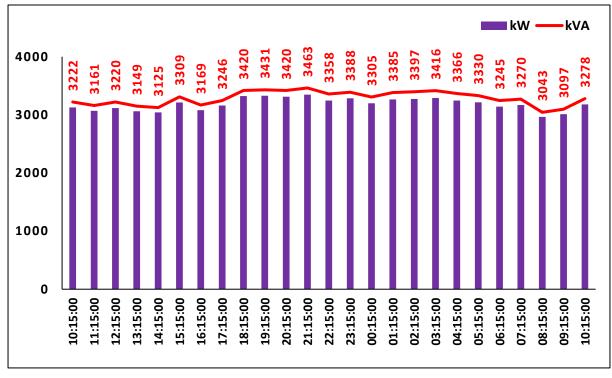

- The plant has one 5000 kVA transformer that steps down the voltage from 22 kV to 433 V
- Technical specifications of this transformer are :

Table 8.1 :	lechnical	Details	of the	Iransformer	

No	Parameter	Unit	Value
1	Make	-	Voltamp, Vadodara
2	Rating	kVA	5000
3	Year of Manufacturing	-	2011

No	Paran	neter	Unit	Value
4	Voltage	HT Side	V	22 000
4	voltage	LT Side	v	433
5	Current	HT Side	A	131.32
	Current	LT Side		6666.86
6	C.T Ratio		-	30 / 5 A
7	Impedance		%	7.67
8	Frequency		Hz	50
9	OLTC			Not provided
10	Cooling Type		-	ONAN
11	No Load Loss	( NLL )	kW	4.5
12	Full Load Loss	( FLL )	N V V	40.9
13	Efficiency at Full	Load	%	99.8
14	Optimal Loading		70	33.2

• The operating parameters were individually recorded on the LT side 24 h period



The kVA and kW drawl trends recorded for 24 h are shown in Fig 8.1

Fig 8.1 : Power Drawl Trend : Active and Apparent

•kWh 🖕 kVAh 80000 56478 296 : kVA 3 63175 : 3 194 59844 kW 664 73584 56438 70612 52988 67507 60000 E7394 64374 61179 57967 54686 51366 32576 48077 40000 29178 44876 25760 41576 22373 38243 34960 31633 28339 20000 25021 21730 18608 15458 12335 0 11:15:00 12:15:00 13:15:00 22:15:00 74 p 00:15:00 10:15:00 14:15:00 15:15:00 16:15:00 17:15:00 18:15:00 19:15:00 20:15:00 21:15:00 23:15:00 01:15:00 02:15:00 03:15:00 04:15:00 05:15:00 06:15:00 07:15:00 08:15:00 09:15:00 10:15:00

The cumulative energy drawl quantities (kWh & kVAh) in the period are shown in Fig 8.2

# Fig 8.2 : Cumulative Power Drawl Quantity : Active and Apparent

- The average apparent and active energy drawl per hour is 3296 kVA & 3194 kW respectively. The corresponding PF has been computed as 0.969
- Further, based on the data captured various parameters that define the performance of the transformer were evaluated and presented in Table 8.2

 Table 8.2 Measured / Computed Data : Performance Evaluation

No	Parameter	s	Unit	Value
1	Apparent Power		kVA	3296
2	Active Power	Avg	kW	3194
3	Power Factor		-	0.969
4	No Load Loss	Design	kW	4.5
5	Full Load Loss	Design	KVV	40.9
6	Avg kVA Loading		%	65.9
7	Optimum Loading		70	33.2
8	Total Load Estimat	ed	kW	22.3
9	All Day Efficiency		%	99.2

- All day efficiency has been established as 99.2 % which is quite acceptable considering the loading of 65.9 % experienced by the transformer ( The optimum loading is 33.2% for the transformer of this higher rating as per the design data provided by the OEM )
- The overall loss estimated is about 540 kWh / day
- As such, the loading of the transformer is reasonable

#### 8.3 CAPACITOR BANKS

#### 8.3.1 Present Status

- The Capacitor Banks are installed in the PCC panels of Powerhouse to compensate for inductance and maintenance of near unity power factor
- This is very much essential as far as this facility is concerned as the PED charges consumer / client for the apparent power used viz kVAh and not kWh
- Hence, maintaining a PF as close as possible to near unity is desirable if the cost spent on electricity is to be optimised / minimised
- Total rating of capacitor banks installed in this plant is 2800 kVAr
- The capacitor banks are divided into 5 banking panels, and they are connected to PCC panels
- Fig 8.3 depicts these details schematically

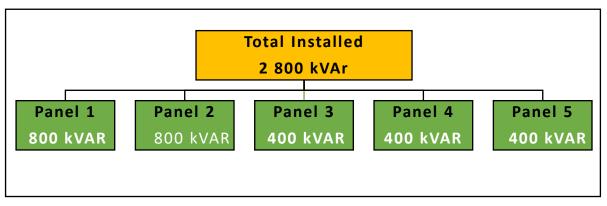



Fig 8.3 : Capacitor Banks installation : Schematic Diagram

• The working details of capacitor banks - based on visual observation - are as below :

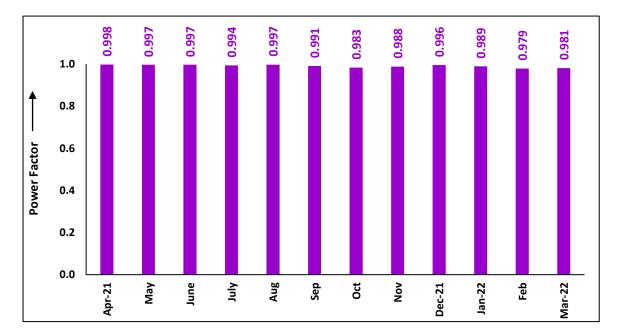

Panel	Working	Non - working	Total
No	kV	Ar	Total
1	800	-	800
2	600	200	800
3	400	-	400
4	100	300	400
5	400	-	400
Total	2300	500	2800

 Table
 8.3 : Working Status of Capacitor Banks Installed

- It was noticed that 500 kVAr was not in operation making thereby only 2300 kVAr effective
- A performance study was conducted on these individual panels following the norms stipulated by B.E.E to establish the effectiveness of each one of the capacitor banks

# 8.3.2 Power Factor Trend Recorded : History

• The power factor trend recorded for 12 - month period [ Apr 21 - Mar 22 ] is shown below in Fig 8.4





• The average PF computed is only 0.991 and this has to go up if the cost saving is aimed at on EB bill payable to PED

# 8.3.3 Performance Evaluation

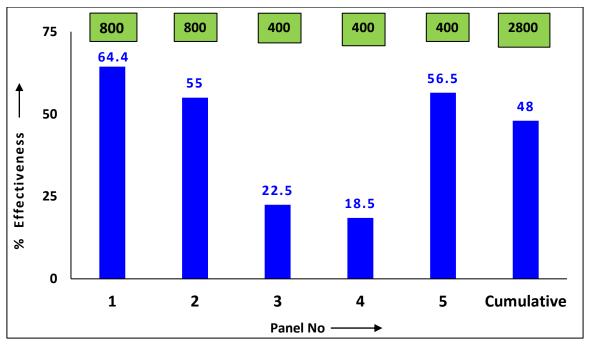
- The procedure adopted goes like this :
  - Each of the capacitor bank (100 kVAr rating) was switched ON 2 and Switched
     OFF and the difference obtained in kVAr is recorded.
  - This difference is then compared with CB rating (100 kVAr) and the effectiveness is arrived at.
  - The bank wise as well as panel wise data captured along with observation and analysis made are tabulated below:

		Panel - 1					Panel - 2				
Stage		Switched		Diff	Eff	Installed	Swi	tched	Diff	Eff	
Slaye	Installed	ON	OFF		<b>E</b> 11	installeu	ON	OFF			
			kVAr		kVAr %			kVAr			
1	100	524	587	63	63.0	100	494	525	31	31.0	
2	100	528	608	80	80.0	100		Not working			
3	100	501	601	100	100.0	100	518	606	88	88.0	
4	100	507	573	67	67.0	100		Not wo	orking		
5	100	501	573	72	72.0	100	527	597	70	70.0	
6	100	504	535	31	31.0	100	509	573	64	64.0	
7	100	518	574	56	56.0	100	545	632	87	87.0	
8	100	524	570	46	46.0	100	525	625	100	100.0	
Total	800			515	64.6	800			440	550	

Table 8.4 : Capacitor Bank : Effectiveness Evaluation : Panel 1 & 2

# Table 8.5 : Capacitor Banks : Effectiveness Evaluation : Panels 3 & 4

	Panel - 3					Panel - 4				
Stage	Installed Switched Diff Eff		Installed	Switched		Diff	Eff			
Slaye	Installeu	ON	OFF		<b>E</b> 11	instaneu	ON	OFF		EII
		kVAr		%			kVAr		%	
1	100	515	542	27	27.0	100	493	567	74	74.0
2	100	519	527	8	8.0		Not working			
3	100	532	550	18	18.0		Nc	ot working	g	
4	100	503	540	37	37.0		Not working			
Total	400		-	90	22.5	400 74 18.5			18.5	


	Panel - 5										
Stago		Swite	ched	OFF	Eff						
Stage	Installed	ON	OFF	OFF	EII						
			kVAr		%						
1	100	534	625	91	91.0						
2	100	553	602	49	49.0						
3	100	554	602	48	48.0						
4	100	529	567	38	38.0						
Total	400			226	56.5						

# Table 8.6 : Capacitor Banks : Effectiveness Evaluation : Panel 5

The summary of the outcome of the study on capacitor banks is tabulated below ( derived from the above Table 8.4 through Table 8.6 )

Panel	Installed Capacity	Effective Effectiven	
No	kVAr	kVAr	%
1	800	515	64.4
2	800	440	55.0
3	400	90	22.5
4	400	74	18.5
5	400	226	56.5
Total	2 800	1 345	48.0

The above data is graphically presented below :





# 8.3.4 Sum - Up

- Out of 2800 kVAR of capacitance installed, 500 kVAR were not in working condition.
- Of the remaining 2300 kVAR, the useful kVAR compensated is only 1345 which forms
   58.5% only. This is 48% only when overall installed rating is considered
- Action shall be initiated to bring the full effectiveness of the capacitor banks into the circuit
- The economics of maintaining higher PF is discussed in Chapter 10

# 8.4 AIR COMPRESSOR

# 8.4.1 Preamble

- The plant has installed 3 Screw Air Compressors (Air Cooled) to meet the process and instrument air demand of the plant
- The designed technical parameters of these air compressors are presented in Table 8.8

No	Parameter	Unit	Compressor No				
NU	Falameter		1	2	3		
1	Make	-	Atlas Capco				
2	Model No	-	ZT 90 ZT 90 SZT 90 -				
3	Capacity	cfm	490				
4	Rated Power	kW	90				
5	Rated Pressure	ksc	7.5				
6	Year of Mfg	-	2020	2014	2017		
7	V F D Fitment	-	No	No	Yes		
8	Machine ID	-	UACP 2016 UACP 2010 UACP 201				

 Table 8.8 : Design Technical Specifications : Air Compressors

- As such, the air compressor operation protocol proceeds as below :
  - > One compressor (either 1 or 2) will be in operation always (base load operation).
  - Compressor No : 3 fitted with VFD operates to take care of the "swing load"
  - When the compressed air requirement increases, other air compressor operating at constant speed - is put into operation in addition to these two. However, this is not a regular happening

- The process air requirement pressure is 5 5.5 bar
- One of the major uses for air compressors is the production of N₂ using the compressed air
- It has been estimated that about 40 % of total air generation goes for N₂ production

### 8.4.2 Technical Measurements Recorded

- The technical details collected on the air compressors are tabulated below.
- The technical data included electrical, flow and temperature parameters in respect of air delivered

No	Paramatar	Unit	Compressor No			
NO	Parameter		1	2	3	
1	Suction Air Velocity	m / s	4.4 - 7.8	2.7 - 3.8	2.7 - 4.6	
2	Pressure : Cut in		5.4	5.4	5.2	
3	Pressure : Cut off		5.8	5.8	5.5	
4	Filter ∆P	bar	0.011	0.006	-	
5	Intercooler Pressure		1.5	2.6	1.8	
6	Air Outlet Pressure		5.1	5.1	5.1	
7	Air Outlet Temperature	°C	46	56	54	
8	Power Drawn	kW	76.3	94.0	82.3	
9	kVA Recorded	kVA	96.9	109.1	111.1	

 Table 8.9
 : Technical Data Captured : Air Compressors 1, 2 & 3

- The air flow delivered by the individual air compressors could not be measured due to the non availability of " *on Line*" flow meters compounded by the non stop operation of all the compressors that makes the conduct of individual performance trial unviable.
- But for the air flow measurements, all other relevant parameters have been collected as can be seen in Table 8.9
- The power drawl by the Air Compressor 2 is way higher than that of Air Compressor 1 and this aspect has to be looked into

# 8.4.3 Air Pressures Data : Observations Made

- Generation pressure of compressed air at the compressor outlet / wet air receiver outlet is 5.1 ksc
- The compressed air pressure of the Dry Air receiver outlet is 4 ksc thus incurring a ΔP of 1 ksc
- The compressed air pressure readings recorded at various usage points at the time of audit are as below :



# Fig 8.6 : Pressure Profile of Comp Air Delivered at Various User Locations

- It was noticed that
  - (i)  $\Delta P$  Across the dryer is as high as 1.1 bar
  - (ii) Compressor air pressure gets reduced to various levels at different locations
  - (iii) N₂ generation demands a pressure of 2.6 bar while the process requires 2 bar
- A pressure optimization study may be initiated in compressed air circuit

# 8.4.4 Air Dryers

- The wet compressor air coming out of compressors is dried through air driers before being sent to the process usage at various pressures
- There are 2 Driers (refrigerant type) installed in the air compressor section and the design details are as below :

No	Parameter	Unit	Compressor No 1	Compressor No 2		
1	Make	-	GEM Equipments			
2	Туре	-	Refrigerant			
3	Rated Capacity	cfm	1000 1500			
4	Rated Power	kW	7.4	9.0		
5	Working Pressure	ksc	16	16		

Table 8.10 : Technical Details of Air Dryer: Design Parameters

• Electrical and related thermal measurements have been caried out on both these driers and the result are presented below :

No	Parameter	Unit	Dryer - 1	Dryer - 2
1	Voltage	V	402.1	407.7
2	Current	А	11.5	17.2
3	Actual Power	kW	6.6	10.3
4	Apparent Power	kVA	7.9	12.2
5	Power Factor	-	0.74	0.84
6	Dew Point Temperature		25.2	7.6
7	Ambient Temperature	°C	38.0	37.6
8	Exhaust Temperature		49	42

- Drier 2 consumes 52 % more energy than that of Dryer 1 (10.3 kW vs 6.6 kW)
- Likewise, the dew point temperature reaches as low as 17.6 °C in Dryer 2 whereas it is much higher in Dryer 1
- This clearly indicates the inferior performance of dryer 2. This has to be set right

# 8.4.5 Sum Up

- A detailed technical study could not be conducted on the air compressors due to non
   availability of "on line" flow meters compounded with continuous non stop operation
- On an average, about 5500 kWh of energy is being consumed by the air compressors alone and that forms close to 10% of total energy consumption of entire plant
- Secondly, the performance of the Dryer 2 found wanting and that needs to be established
- Hence, it is imperative that a detailed and dedicated techno commercial study is initiated on air compressors as it appears to offer tangible scope on energy conservation

# PERFORMANCE STUDY ON

# COOLING TOWERS + ASSOCIATED PUMPS

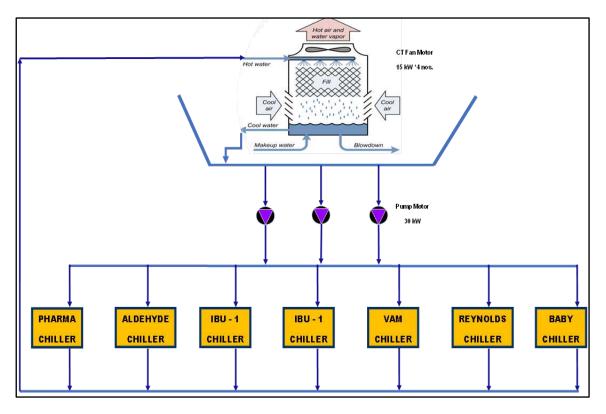
#### 9.1 PREAMBLE

- There are 5 Cooling Towers installed in this facility and are dedicated to various processes.
- The energy consumption of the cooling towers is estimated to be 16% of overall energy consumption of the plant . Thus, it calls for effective scrutiny in terms of its performance as well as energy consumption / optimisation .
- The number of cooling towers and the associated process details are given in the Table below :

No	Section	Chiller Medium	Rating TR	Application	No of Compartments	MoC
1	Utility	Brine + Chilled Water	2 000	Aldehyde, Pharma, IBU Chiller etc.,	4	FRP
2	Process	Process Water	1 500	IBU, Pilot, Aldehyde etc.,	4	
3	ZLD	Process Water	1 500	Z L D plant, MEE, Boiler	2	Wooden
4	Pharma	Process Water	500	Pharma, Recovery, 2 D	1	٥N
5	IPCA	Chilled Water	800	IPCA Chiller + Block 70	2	
Total			6 300		13	

### Table 9.1 : Cooling Tower : Utilities Dedicated & Operational Status

- All the 5 cooling towers were in operation at the time of study.
- Performance assessment has been carried out on 5 cooling towers and the measurements recorded include the following :
  - 1) Return Cooling Water Temperature ( at inlet to the CT ) :  $[T_{IN}]$
  - 2) Supply Cooling Water Temperature (at CT sump) : [T_{OUT}]
  - 3) Ambient Dry Bulb and Wet Bulb Temperature :  $[T_{DB} \& T_{WBT}]$
  - 4) Cooling Water Circulation Rate : [ Q_{CW} ]


- The cooling tower operational Range, Approach and Effectiveness are calculated using the temperatures recorded (first 3 parameters).
- The heat load handled by the cooling tower is computed using a combination of the 1st two parameters and the 4th which are detailed as below :

Range	=	[T _{IN} -T _{OUT} ] °C
Approach	=	[T _{OUT} -T _{WBT} ]°C
Effectiveness %	=	[Range / (Range + Approach)]
Heat Load	=	Q _{CHW} x ρ x 1 kcal / kg / °C x [T _{IN} - T _{OUT} ] kcal / h

# 9.2 COOLING TOWERS

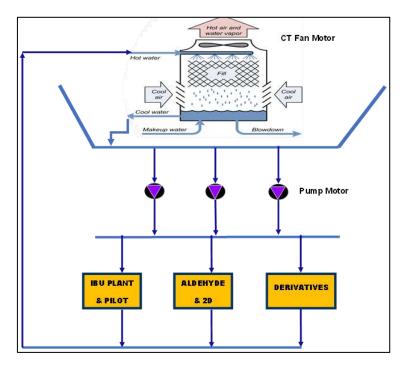
# 9.2.1 Utility Cooling Tower [ 2 000 T R ]

- One Cooling Tower of 2000 TR rating has been dedicated towards meeting the thermal load of process operations of Aldehyde, Pharma & IBU Chiller Plants
- This Cooling Tower is operated through 4 fans and 3 pumps, and the schematic is as below :





• The technical parameters measured as well that computed are presented in Table 9.2


Table 9.2 : Performance Assessment Data: 0	Captured & Computed : Utility 2000 TR
--------------------------------------------	---------------------------------------

No	Parameter		UoM	Measured Values			
NO				16:00	16:30	17:00	17:30
1	Ambient Temperature		°C	35.3	34.6	33.8	33.2
2	Relative Humidity		%	59.9	59.7	65.2	72.3
3	W.B.T near CT			28.3	27.7	28.0	28.8
4	Water In Temperature Out			33.8	33.8	33.8	34.4
5			°C	30.4	30.3	30.5	31.1
6	Range			3.4	3.5	3.3	3.3
7	Approach			2.1	2.6	2.5	2.3
8	Effectiveness		%	61.8	57.4	56.9	58.9
Electricity			Fan 1	Fan 2	Fan 3	Fan 4	
1	Fan Power		kW	13	5.3	10	7.8
2	VFD		Hz	50	30	42	42

• The Effectiveness has been recorded as **58.8** % for this cooling tower which is fairly reasonable

### 9.2.2 Process Cooling Tower (IBU : 1500 TR)

- This Cooling Tower is of 1500 TR capacity and operated through 2 fans and 3 pumps
- The scheme is presented in Fig 9.2





• The technical details computed and captured are presented in Table 9.3

No	Paramete	-	UoM	15:30       16:00       16:30       17:00         36.9       35.9       34.8       34.1         54.7       55.9       58.7       62.3         28.6       28.0       27.6       27.8         35.0       34.7       34.9       34.2         33.8       33.6       33.8       32.3         1.2       1.1       1.1       1.9         5.2       5.6       6.2       4.5         18.8       16.4       15.1       29.7         Fan 1			
NO	NO Farameter		001	15:30	16:00	16:30	17:00
1	Ambient Temperature		°C	36.9	35.9	34.8	34.1
2	Relative Humidity		%	54.7	55.9	58.7	62.3
3	W.B.T		28.6	28.0	27.6	27.8	
4	Water Temperature	In		35.0	34.7	34.9	34.2
5	Water Temperature	Out	°C	33.8	33.6	33.8	32.3
6	Range			1.2	1.1	1.1	1.9
7	Approach			5.2	5.6	6.2	4.5
8	Effectiveness		%	18.8	16.4	15.1	29.7
	Electricity			Fa	n 1	Fan 2	
9	Fan Power	kW	6.	9	7.1		
10	Fan Frequency		Hz	3	5	35	

 Table 9.3 : Performance Assessment Data: Captured & Computed : IBU 500TR

- This cooling tower fans are fitted with VFD and operate at a frequency of 35 Hz
- Despite this, the effectiveness was found to be around 25 % only due to limited ∆T recorded in the water circuit
- The approach value of greater than 5.5°C recorded is on the higher side

## 9.2.3 Z L D Plant Cooling Tower : (1500 TR)

• One Cooling Tower of 1500 T R rating is dedicated for ZLD plant operation

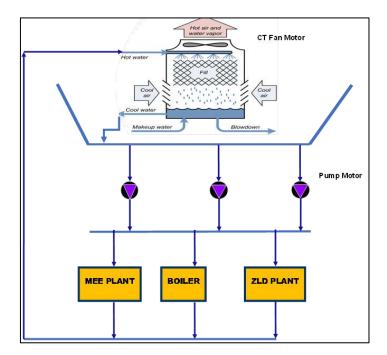
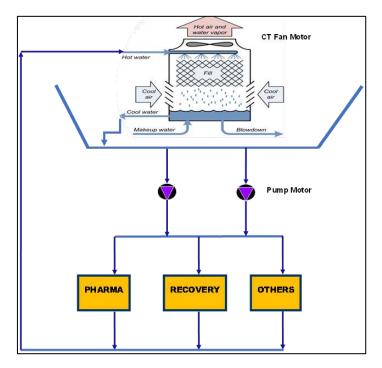
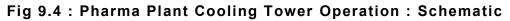



Fig 9.3 : Z L D Plant Cooling Tower Operation : Schematic

• The measurements recorded and the key performance indicators [KPIs] established subsequently are summarised in the table below


No	Parameter	UoM	Me	asure	d Va	lues
NO	Parameter	UOW	17:00	17:	20	17:45
1	Ambient Temperature	°C	31.8	31	.4	31.7
2	Relative Humidity	%	76	6	8	77
3	W.B.T near CT		28.1	26	.3	28.2
4	Mater Temperature		41.2	40	.1	40.0
5	Water Temperature Ou	°C	33.4	33	.6	33.1
6	Range		7.8	6.	5	6.9
7	Approach		5.3	7.	3	4.9
8	Effectiveness	%	59.5	47	.1	58.5
	Electricity		Fan	1	1 Fa	
9	Fan Power	kW	13.	4		13.0
10	Fan Frequency	Ηz	50	)	50	


 Table 9.4 : Performance Assessment Data: Captured & Computed : ZLD - 1500TR

• The effectiveness of the CT was found to be reasonable at 55 % and is acceptable

#### 9.2.4 Pharma Plant Cooling Tower: (500TR)

- There is a wooden cooling tower of 500 TR capacity that is used to meet the thermal load of the Pharma, Recovery & 2 D plants
- The scheme of operation is as below :





• The measurements recorded are shown in Table 9.5

No	Deremeter		UoM	Μ	Measured Values				
NO	Parameter		UOW	16:00	16:3017:0017:3034.63433.560.263.472.127.627.928.8				
1	Ambient Temperature		°C	35.5	34.6	34	33.5		
2	Relative Humidity		%	58.1	60.2	63.4	72.1		
3	W.B.T near CT		28.0	27.6	27.9	28.8			
4	Water Temperature	In		34.7	34.1	34.6	34.7		
5	Water Temperature	Out	°C	33.1	32.6	32.5	33.4		
6	Range			1.6	1.5	2.1	1.3		
7	Approach			5.1	5.0	4.6	4.6		
8	Effectiveness		%	23.9	23.1	31.3	22.0		
9	Fan Power	kW	3						
10	Fan Frequency		Hz		3	5			

Table 9.5 : Performance Assessment Data: Captured & Computed : Pharma

• The power drawl as well the effectiveness is very low in this Cooling Tower as can be seen

## 9.2.5 IPCA Plant Cooling Tower (800 TR)

• A dedicated Cooling Tower of 800 TR rating has been installed on the roof top of the building having IPCA to meet the thermal load of this plant & that of Block 70

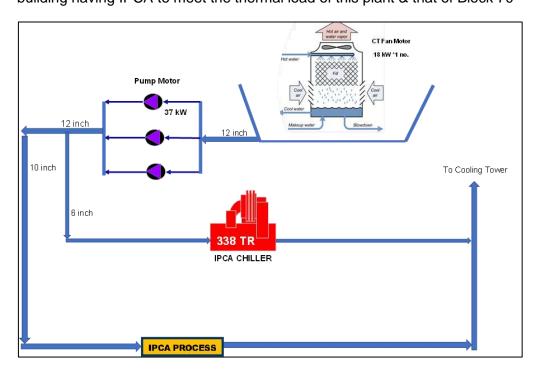



Fig 9.5 : IPCA Plant Cooling Tower Operation : Schematic

• Table 9.6 presents the measurements taken on this cooling tower

No	Parameter		UoM	Measure	d Values	
NO	Falameter		001	15:40	16:00	
1	Ambient Temperature		°C	31.9	35.0	
2	Relative Humidity		%	67.2	58.2	
3	W.B.T near CT			26.7	27.7	
4	Water Temperature	In		38.2	38.0	
5	Water Temperature		°C	33.8	33.6	
6	Range			4.4	4.4	
7	Approach			7.1	5.9	
8	Effectiveness		%	38.3	42.7	
9	Fan Power	kW	1	10		
10	Fan Frequency		Hz	45		

Table 9.6 : Performance Assessment Data: Captured & Computed : IPCA

• The performance established in terms of its effectiveness is seemed to be okay at 40.5 % but still can be enhanced

#### 9.2.6 Consolidation

• The effectiveness of all the 5 cooling towers along with Approach Temperature have been plotted in Fig 9.6 and compared

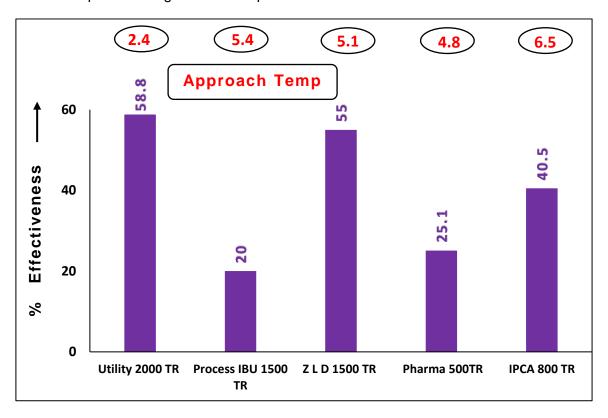



Fig 9.6 : Effectiveness and Approach Temperatures of CTs

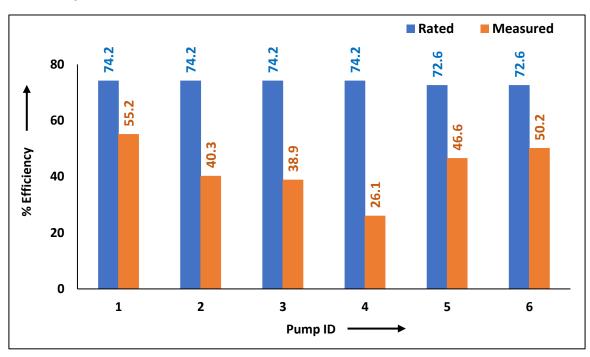
- It was observed that higher the "Approach Temperature" lower was effectiveness
- However, the effectiveness was 55 % in the cooling tower of ZLD despite the approach temperature being 5.1 °C. This is probably due to the fact that this cooling tower has experienced a high ' *Range*' of 7.2 °C
- As a general remark, it is suggested that effort shall be put in to decrease the approach temperature in CTs
- As such , the performance of Cooling Towers of this plant can be ranked at 5 in a scale of 10

#### 9.3 PUMP PERFORMANCE EVALUATION

#### 9.3.1 Introduction

- Typically, pumps hold a significant share of energy consumption in the Utility Section of a plant. Application of the pumps ranges from transferring Raw Water, Chilled Water, Cooling Water, RO Water so on and so forth. As such, the pumps are very sensitive piece of utilities with respect to their operating parameters. The wrong selection of operating parameters viz, Flow Rate and the Pressure Head can bring down the operating efficiency of even a well - designed pumps to an abysmally low level. Hence it is important not only to procure an energy efficient pump but also operate it on the selected / designed parameters
- As far as this plant is concerned, performance study has been conducted on the pumps belonging to the following 3 categories:
  - i) Chilled Water / Brine Pumps
  - ii) Cooling Water (Condenser) Pumps
  - iii) Process Water Pumps
- The performance of the pumps has been evaluated through the measurements of the following 3 relevant parameters, viz,
  - a) Fluid Flow Rate  $(m^3/h)$
  - b) Total Pressure Head developed ( m WC )
  - c) Input Power to the Motor (kW)

#### 9.3.2 Chilled Water / Brine Pumps


#### 9.3.2.1 Performance Evaluation

- A performance study has been conducted on 2 Nos of Brine Pumps and 4 Nos of Chilled Water Pumps which are in operation at the time of energy auditing
- The outcome of study is tabulated below

#### Table 9.7 : Performance of Pumps Handling : Brine + Chilled Water

			Rate	ed		Measured			Sp. Threinut		
No	Pump ID	Flow	Head	<b>Power</b> η		Flow	Head	Power	η	Sp. Thro'put m ³ / h / kW	
		m³ / h	m WC	kW	%	m ³ / h	m WC	kW	%		
1	Brine Pump – 1 (Aldehyde)				176	38	33.0	55.2	5.33		
2	Brine Pump – 1 (Pharma)					8	40.3	4.11			
3	Chilled Water Pump - 1 IBU 1		50	55			38.9	3.96			
4	Chilled Water Pump - 3 VAM	300				104	40	43.4	26.1	2.40	
5	Chilled Water Pump - 1 ( East )				9	176	36	37	46.6	4.76	
6	Chilled Water Pump - 2 (West)		40	4	45	174	36	34	50.2	5.12	

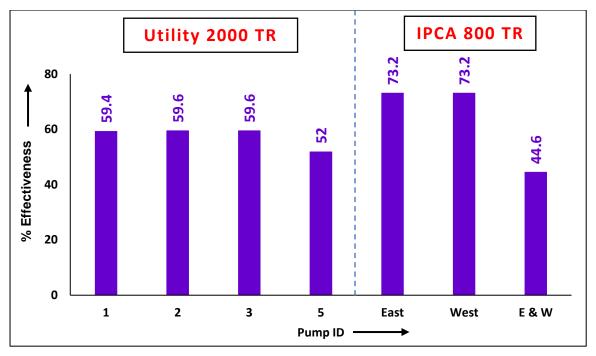
• The overall pump efficiency obtained for each pump is compared with that designed





in Fig 9.7

## 9.3.2.2 Observations & Comments


- The overall efficiency of the pumps was found to be lower than that of the designed
- As far as Brine Pumps are concerned, the flow rates were only 60 % the designed values despite the Head developed being low. This indicates that the pumps need to be overhauled as replaced if it comes to that to achieve a better efficiency.
- Chilled Water Pumps too do no better performance. The chilled water pumps of VAM show an abysmally low efficiency of 26% as against a designed value of 74.2%
- As such, it can be said that the performance of all the 6 pumps was found wanting

## 9.3.3 Condenser Water Pumps : Chillers

#### 9.3.3.1 Performance Evaluation

- 6 pumps have been analyzed for their performance that fall under the category of condenser water pumps belonging to cooling tower of chillers
- The outcome is as below:

				Rat	ted		Measured				<b>A -H A A</b>
No	Section	Pump ID	Flow	Head	Power	η	Flow	Head	Power	η	Sp. Thro'put m³ / h / kW
			m³ / h	m WC	kW	%	m³ / h	m WC	kW	%	,
L Utility CT : 2000 TR	R	Condenser Water pump 1	Ν	N.A		-	209	24	23	59.4	9.09
	: 2000	Condenser Water pump 2	Ν	J.A	- 30	-	208	24	22.8	59.6	9.12
	llity CT	Condenser Water pump 3	Ν	J.A	50	-	184	24	20.2	59.6	9.10
	ň	Condenser Water pump 5	N.A			-	131	21	14.4	52.0	9.10
2	IPCA CT 800 TR	Condenser Water pump East	311	32	37	73.2	440	27	72.6	44.6	6.06
2		Condenser Water pump West	311	32	37	73.2	440	2.	12.0		0.00





## 9.3.3.2 Observations & Comments

- The performance of condenser water pumps of Utilities CT (2000 TR) were found to be quite uniform at 59.6% overall efficiency levels but for Pump No : 5.
- This Pump No 5 had performed a bit inferior at 52% as overall efficiency
- As far as the Condenser Water Pumps of IPCA Cooling Tower are concerned, the individual performance of the pumps could not be estimated for want of provision. Nevertheless, the combined overall efficiency could be established and estimated as 44.6 % which is about 60% of the designed efficiency of 73.2 %
- While the head developed by these pumps had matched with that designed, the water flow rate appeared to be on the lower side. This had brought down the overall efficiency of the pumps considerably.
- Enhancing the water flow rate would improve the performance of the cooling tower as well the process.

## 9.3.4 Condenser Water Pumps:

## 9.3.4.1 Performance Evaluation

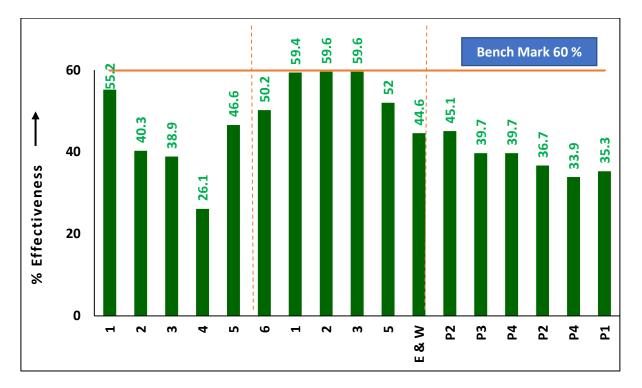
• The Condenser Pumps of Process Cooling Towers of 1500 TR, ZLD and 500 TR come under this classification and their performance have been evaluated

• The captured and computed data are tabulated below :

				Rate	ed		Measured				Sp.
No	Section	Pump ID	Flow	Head	Power	η	Flow	Head	Power	η	Thro'put
			m³ / h	m WC	kW	%	m³ / h	m WC	kW	%	m ³ / h / kW
	CT S	Condenser Water Pump 2	-	43	55	-	540	17	55.5	45.1	9.73
1	Process CT 1500 TR	Condenser Water Pump 3	-	43	55	-	487	15	50.1	39.7	9.72
	Pro 1	Condenser Water Pump 4	-	43	55	-	404	15	41.5	39.7	9.73
2	ст	Condenser Water Pump 2	300	50	55	74.3	221	25	41	36.7	5.39
2	ZLD	Condenser Water Pump 4	300	50	55	74.3	209	25	42	33.9	4.98
3	Process CT 500 TR	Condenser Water Pump	-	-	55	-	183	34	48	35.3	3.81

#### Table 9.9 : Performance: Condenser Water Pumps of CTs






## 9.3.4.2 Observation & Comments

- None of the pumps can develop an overall efficiency of even 50 %
- The Head developed as against the designed values are much in variance and that could be one of the reasons for attaining lower efficiency levels in pump operation.
- The rated flow rates were not available and hence could not be commented upon.

## 9.3.5 Consolidation

- Pumps handling Brine & Chilled Water for process applications majorly perform below par at 50 % level and less.
- Pumps of Utility Section 2000 TR CT perform reasonably well showing an overall efficiency of 60 %
- Pumps associated with 1500 TR CT, ZLD & 500 TR CT are quite lowly at much less than 50 %
- Typically benchmark efficiencies for the pumps can be fixed at 60 % considering the age, make, usage operating parameters etc.,



## Fig 9.10 : Comparison of Pump Efficiencies vis- a -vis Benchmark Value

The way forward is to take up a dedicated "Pump Performance Study " and look for performance improvement through various means that could include the pump replacement, pump swapping, varying the present operating parameters etc.,

# 10 PERFORMANCE STUDY ON CHILLERS - A DETAILED ANALYSIS

#### **10.1 INTRODUCTION**

- The Chilled Water / Brine is one of the most needed Utilities of the plant as it finds its application in maintaining required ambience inside the plant and also in the extraction of heat of various chemical reactions going on in the manufacture of pharma products
- It is treated as a critical utility as any improper / ineffective heat extraction / transfer can lead to quality related issues that can result in the rejection of the finished good altogether. A costly affair
- As far as this industry is concerned, the energy consumption due to Chiller Plant and Cooling Towers works out to about 750 MWh / month vis – a - vis an average monthly energy consumption of 2065 MWh. This forms 36% of total energy consumption of the plant
- Chiller system accounts for 20% and the cooling tower for 16%. This information is presented pictorially in Fig 10.1

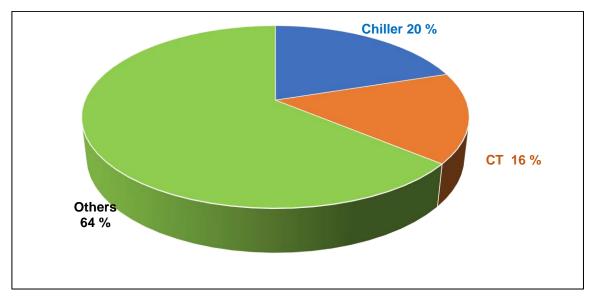



Fig 10.1 Energy Consumption Share of Chiller + Cooling Tower

 Thus, energy optimization in Chiller System assumes significance and hence is accorded top priority in pharma industries both from quality as well as from energy point of view • The ensuing section discusses the performance of the Chiller Systems of the plant in detail

## 10.2 CHILLER SYSTEMS : INVENTORY & WAY FORWARD

- The Chiller Systems in this plant consist of the following :
  - Water Cooled Centralised Chillers [ Brine & Chilled water as "Cool Energy" transfer media]
  - (ii) Package / Ductable Air Conditioners
  - (iii) Split Air Conditioners
  - (iv) AHUs and Cooling Towers associated with Chillers
- It has been recorded that the total installed rating of Centralized Chilled Water / Brine is 2174 T R and the break up is as follows :

No	Chillor	Plant System	Fluid Medium	Ref. Rating	
NO	Chiller	ant System	Fluid Medium	TR	
1		Aldehyde	Brine [Methanol 18 %, Sp.gr : 0.95]	225	
2		Pharma	Brine [ Cacl₂ 18 %, Sp.gr : 1.01 ]	150	
3	. <u>≻</u> . <u>±</u> IBU - 1			384	
4	Utility	IBU - 2	Chilled Water	384	
5		VAM Chiller		480	
6		Reynold	Brine [Methanol 18 %, Sp.gr 0.95]	188	
7	7 Baby Chiller		Brine	25	
8	8 IPCA Plant		Chilled Water	338	
	Total				

Table 10.1 : Centralized Chilled Water / Brine Systems – Inventory

- A detailed technical study on the Chiller Systems that include the performance study of Chillers, Cooling Towers, Associated Pumps and AHUs has been conducted.
- However, no such study was undertaken on ductable and split A / Cs as they are not only star - rated energy efficient systems but also operated only on the demand basis.
- The measurements recorded include Energy Consumption. Flow Rate of Water & Brine, Operating Temperatures & Pressures etc.,

- The Chiller Systems have been divided into 4 circuits for convenience sake and analysed
- The scheme of division of chiller circuits is as below in Table 10.2

Table 10.2 : Chiller Systems : Scheme of Operation : Break - Up

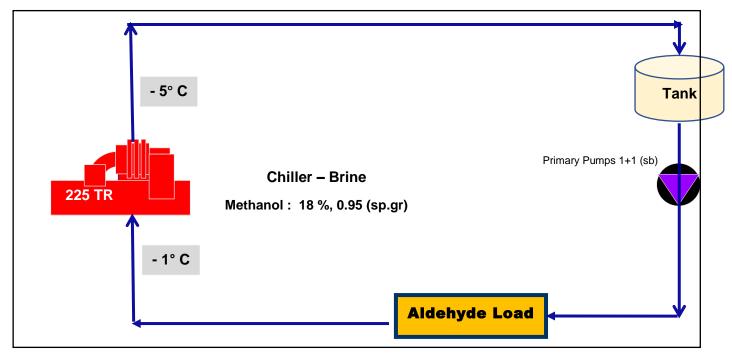
No	Circuit ID	Location	Ultimate User Plant	Cooling Tower ID
1	Circuit - 1		Aldehyde : UCCH 2018	Utility CT –
2	Circuit - 2	Utility	Pharma : UCCH 2022	
3	Circuit - 3		IBU -1, IBU-2, VAM (UCCH 2019)	2000 TR
4	Circuit - 4	I P C A Building	IPCA Chiller (UCCH 2016)	IPCA CT - 800 TR

• The performance evaluation has been conducted on the Chiller System of each circuit and detailed in ensuing sections.

## 10.3 CIRCUIT NO : 1 : ALDEHYDE PLANT

- This Chiller System is Brine based and designed to take the process heat load of various reactors of this aldehyde plant
- The cooling temperature demanded in this plant is 5°C
- At the time of supply, the chilled brine solution designated was Ethylene Glycol by the OEM and it has been substituted by Methanol now

## 10.3.1 Design Parameters


• The design parameters of this system - as per OEM - under the present circumstances is given in Table 10.3

## Table 10.3 : Chilled System : Circuit 1 : Aldehyde : Design Parameters

No	Parameters	Unit	Value
1	Capacity	TR	252
2	Power Consumption	kW	248
3	Fluid Medium	-	(Methanol : 18% con )

No	Parameters	Unit	Value							
4	Evaporator : Brine Solution									
	a) Flow Rate m ³ / h 198									
	b) Entering Temperature	°C	- 1							
	c) Leaving Temperature		- 5							
	d) Pressure Drop	m WC	7.0							
5	Condenser : Cooling Tower Wa	ater								
	a) Flow Rate	m³ / h	241							
	b) Entering Temperature	°C	36							
	c) Leaving Temperature		32							
	d) Pressure Drop	m WC	4.0							
	e) Specific Energy Consumption	kW / TR	0.984							

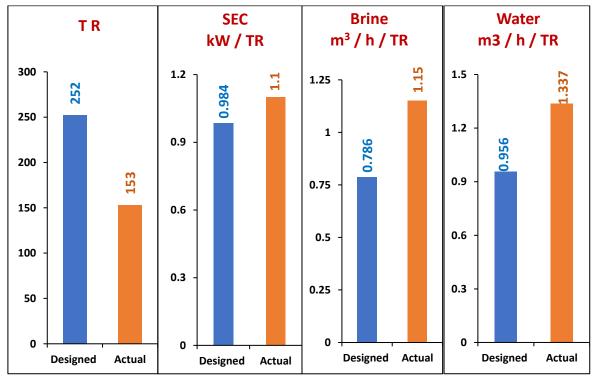
#### The scheme of operation is shown in Fig 10.2



## Fig 10.2 : Present Scheme of Operation : Circuit 1 : Aldehyde Plant

#### 10.3.2 Study Parameters + Performance Evaluation

- 4 sets of measurements have been taken in order to establish the repeatability / reliability of the results of the study undertaken
- The study outcome is shown in Table10.4


	Display Para	neter		Set 1	Set 2	Set 3	Set 4	
	Date: 10.06.2022	2 & Time		11.10	12:30	2.20	3.10	
				am	pm	pm	pm	
No	Parameter	T) E1	Unit		Val	ue		
	Cat Daint	I) E'						
1	Set Point		°C		- 5	.5		
2	Chilled Water		3 / h	470	470	470	470	
	a) Flow Rate	<b>F</b> atarian	m³/h	176	176	176	176	
	b) Temperature	Entering	°C	- 2.5	- 2.9	- 3.1	- 3.2	
		Leaving		- 5.4	- 5.6	- 5.6	- 5.6	
	c) Pressure	Entering	bar		1.:			
2	Defrigerent	Leaving			0.4	+		
3	Refrigerant		°C	- 8.7	- 8.7	- 8.5	- 8.5	
	a) Temperature b) Pressure		bar	- 0.7	1.09	- 8.5	- 6.5	
4	,		TR	1.10	1.09	146	140	153
	Cooling Load Delivered		$m^3/h/TR$					155
6	Condenser Water	II)	CONDENS					
0	a) Flow Rate		m ³ /h	227	229	224	223	
		Entering		29.4	22.3	30.3	30.4	
	b) Temperature	Leaving	°C	32.1	31.9	32.7	32.7	
		Entering		02.1	2.1		02.7	
	c) Pressure	Leaving	. bar	1.6				
7	Refrigerant	Loaning				<u> </u>		
	a) Temperature		°C	33.2	33.3	34.4	34.2	
	b) Pressure		bar	7.33	6.32	7.62	7.55	
8	Specific Condenser Water F	Flow Rate	m ³ /h/TR	1.343	1.459	1.534	1.593	
	III)		RESSOR 8					
9	Refrigerant Discharge Temp			61	61.5	65.3	65.8	
10	Discharge Superheat		°C	27.4	28.3	31.1	31.7	
11	RLA		%	75	71.3	70.8	67	169
12	Power Consumption		kW	177.5	169	170	158	1.10
13	Specific Energy Consumption	on (SEC)	ikW/TR	1.052	1.075	1.168	1.131	

# Table 10.4 : Chiller System : Circuit 1 : Aldehyde : Evaluated Parameters: UFM

## 10.3.3 Typical Process Parameters : A Comparison

- A comparison is made on the important operating parameters of the system between the designed & the operating ones - that defines the performance of the chiller system
- The performance taken up for the comparison's sake include :

(i).	Cooling Load Delivered	:	TR
(ii).	Specific Energy Consumption	:	kW / TR
(iii).	Specific Brine Flow Rate	:	m³ / h / TR
(iv).	Specific Cooling Water Flow Rate	:	m³ / h / TR



The above parameters are sketched in Fig 10.3

Fig 10.3 : Performance Comparison : Typical Parameters: Circuit 1

• It can be seen from the above chart that the actual operating parameters are much different ( on the inferior side ) from the designed values

# 10.3.4 Comments

 Fluid medium - currently in use - is Methanol whilst the designed one is Ethylene Glycol. This change over has been done with the consent of plant personnel. Methanol usage is likely to reduce the lifetime of evaporator coil in the long run due to its corrosive nature. Hence care has to be exercised

- Water used in the condenser was found to have varying TDS as the water evaporation is replenished with recycled water. It is imperative that a monitoring mechanism is evolved in order to keep a check on TDS of condenser water. Poor quality water will hamper effective heat transfer.
- It may be noted that the TR delivered is much lower than the designed [252 T R vs 153 T R ] and efforts shall be made to identify the root cause.

## **10.4 CIRCUIT NO 2 : PHARMA PLANT**

- This Chiller System too is brine based [Ethylene Glycol] but changed over to Cacl₂ as Brine solution due to process requirements.
- This plant caters to the Chilling load of the reactors of the pharma section
- The original designed temperatures were  $0 / 5^{\circ}C$  while the current temperature values are + 1 / 2°C

#### **10.4.1 Designed Parameters**

The designed parameters of this system are presented below [present condition]:

Table 10.5 Chiller System : Circuit 2 : Pharma Plant : Designed Parameters

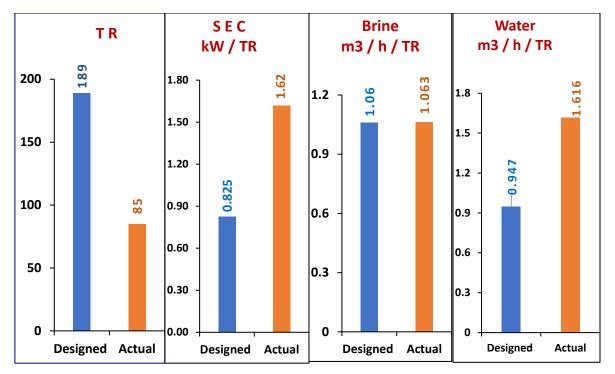
No	Parameters	Unit	Value
1	Capacity	TR	189
2	Power Consumption	kW	156
3	Fluid Medium	-	CaCl2
4	Evaporator :	Brine Solution	
	a) Flow Rate	m ³ / h	201
	b) Entering Temperature	°C	1
	c) Leaving Temperature		- 2
	d) Pressure Drop	m WC	5
5	Condenser:Co	oling Tower Wa	iter
	a) Flow Rate	m ³ / h	179
	b) Entering Temperature	°C	36
	c) Leaving Temperature		32
	d) Pressure Drop	m WC	3
6	Specific Energy Consumption	kW / TR	0.825

The scheme of operation is shown in Fig 10.4





## 10.4.2 Study Parameters + Performance Evaluation


 4 sets of measurements have been recorded and the same along with computed values presented in Table 10.6

	Displa	ay Parameter		Set 1	Set 2	Set 3	Set 4
	Date: 10	.06.2022 & Time		11.20	12:40	02.30	04.40
					pm	pm	pm
No	No Parameter Unit				Va	lue	
		I) EV	APORATO	R			
1	1 Set Point				-	3	
2	Chilled Water						
	a) Flow Rate		m³/ h	182	183	184	185
	b) Temperature	Entering	°C	- 0.4	- 1	- 0.8	- 0.4
		Leaving		- 1.9	- 2	- 2.1	- 1.4
	c) Prossuro	Entering	bar	4	3.9	3.9	3.9
	c) Pressure Leaving			3.5	3.4	3.4	3.4
3	Refrigerant						
	a) Temperature		°C	- 3.7	- 3.7	- 3.8	- 3.4
	b) Pressure		bar	1.54	1.55	1.54	1.58

	Displa	ay Parameter		Set 1	Set 2	Set 3	Set 4		
	Date: 10	.06.2022 & Time		11.20	12:40	02.30	04.40	1	
No	r	meter	Unit	am	pm Va	pm Iuo	pm	4	
4	Cooling Load Deliv		TR	90	61	79	110	85	
5	Specific Brine Flow	v Rate	m ³ /h/TR	2.02	3	2.33	1.68	J	
	II) CONDENSER								
6	Condenser Wate	Condenser Water							
	a) Flow Rate		m³/h	86	80	85	88		
	h) Torren erreture	Entering	0.0	29.4	29.3	30.3	30.4		
	b) Temperature	Leaving	°C	33.5	32.4	34.0	35.2		
		Entering	bar	1.7	1.7	1.7	1.7		
	c) Pressure	Leaving	Dai	1.4	1.4	1.4	1.4		
7	Refrigerant			· · · · ·					
а	a) Temperature		°C	33.9	32.5	34.3	35.9		
b	b) Pressure		bar	7.6	7.3	7.7	8.1		
8	Specific Condense	er Water Flow Rate	m ³ /h/TR	0.96	1.31	1.08	0.8		
		III) COMPR	ESSOR &	мото	R				
9	Refrigerant Discha	arge Temperature	°C	47	47.3	48.3	48.9		
10	Discharge Superh	eat		13.1	15.2	13.7	13.1		
11	RLA		%	85	67	80	96		
12	Power consumptio	Power consumption		140.8	110.7	131.0	156.6	134.7	
13	Specific Energy Co	onsumption(SEC)	kW / TR	1.564	1.815	1.658	1.425	1.59	

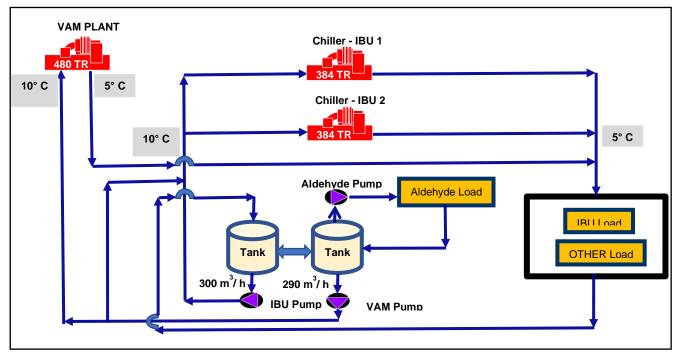
## 10.4.3 Typical Process Parameters : A Comparison

• A comparison made on the parameters - that define the efficiency of the Chiller Operation - is shown below :





#### 10.4.4 Comments


- Fluid medium currently in use is Calcium Chloride as against a designed media of Ethelene Glycol. Of course, this had been done with the concurrence plant personnel
- Initially, Chiller was designed with -5 / 0 °C outlet / inlet chilled brine but presently it is
   +1 / -2 °C
- The Specific energy consumption (SEC) is found to be quite high probably due to the low condenser water flow rate compared with the design.
- The low water flow rate in the in condenser would be affecting the heat transfer and thereby the chiller output
- Likewise, Evaporator approach temperature also needs to be improved
- The usage of CaCl₂ in longer run is likely to induce corrosion in evaporator coils
- TR delivered by this plant is quite low at 85 as against the designed value of 189

## 10.5 Circuit No 3: IBU Plant

#### 10.5.1 Preamble

The chiller plant in Circuit 3 supplies chilled water to the entire plant area and AHUs.
 Hence, to meet this demand, there are 3 Chillers employed in the circuit namely,
 IBU - 1, IBU - 2 and Vapour Absorption based Chiller (VAM)

- At the time of study, IBU 2 was under maintenance and hence performance study could be carried out only on IBU 1 and VAM Chiller.
- There are two tanks installed in this circuit for the distribution and collection of chilled water.
- The scheme of operation is shown in Fig 10.6



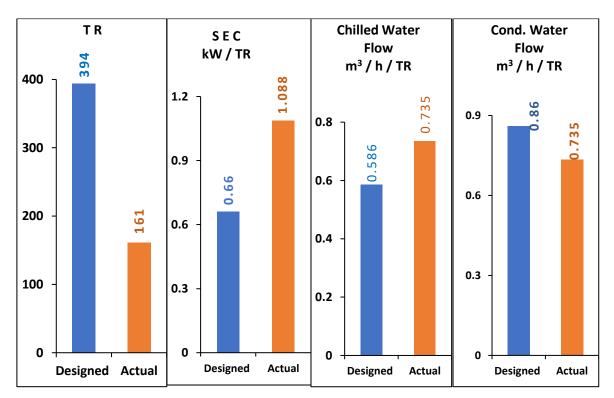


#### 10.5.2 Design Parameters

• The design parameters - as per the OEM - of this Chiller Unit - are consolidated and tabulated below

No	Parameters	Unit	Value	
1	Capacity	TR	394	
2	Power Consumption	kW	260	
3	Fluid Medium	-	Chilled Water	
4	Evaporator : Chilled Water			
	a) Flow Rate	m ³ / h	231	
	b) Entering Temperature	°C	10	
	c) Leaving Temperature		5	
	d) Pressure Drop	m WC	7	

No	Parameters	Unit	Value
5	Condenser : Cooling Tower Water		
	a) Flow Rate	m ³ / h	339
	b) Entering Temperature	°C	36
	c) Leaving Temperature	υ	32
	d) Pressure Drop	m WC	7.7
6	Specific Energy Consumption	kW / TR	0.66


## 10.5.3 Study Parameters + Performance Evaluation

- 4 set of measurements have been recorded in this Chiller System too as per details provided in Table 10.8
- The study outcome is presented below, and a comparison is made in Fig 10.7

	Displa	y Parameter		Set 1	Set 2	Set 3	Set 4	
	Date: 10.	06.2022 & Time		11.30	12:50	02.50	03.25	
No	Parar		Unit	am	pm Va	pm lue	pm	
NO	raiai		EVAPORA	TOR	• • •	liue		
1	Set Point	-,	°C			+5		1
2	Chilled Water							-
	a) Flow Rate		m³/h	218.5	218.5	218.5	218.5	1
	h) Taran anatura	Entering	0.0	7.1	7.1	7.2	7.1	1
	b) Temperature	Leaving	°C	4.9	4.9	4.9	4.9	
		Entering	bar	3.9	4.1	4.1	4.1	
	c) Pressure	Leaving		2.4	2.6	2.6	2.6	
3	Refrigerant							
	a) Temperature		°C	3.2	3.4	3.3	3.4	
	b) Pressure		bar	2.28	2.3	2.3	2.3	
4	Cooling Load Deliv	vered	TR	159	159	166	159	161
5	Specific Chilled W	ater Flow Rate	m ³ /h/TR	1.374	1.374	1.316	1.374	
		II)	CONDEN	SER				
6	Condenser Wa	ter						
	Flow Rate		m³/h	121	107	121	124	
	Temperature	Entering	°C	29.8	29.1	30.9	30.9	
	Temperature	Leaving		34.6	34.5	35.9	35.6	
		Entering	bar	2.0	2.0	2.0	2.0	
	Pressure	Leaving	Dai	1.4	1.3	1.3	1.3	

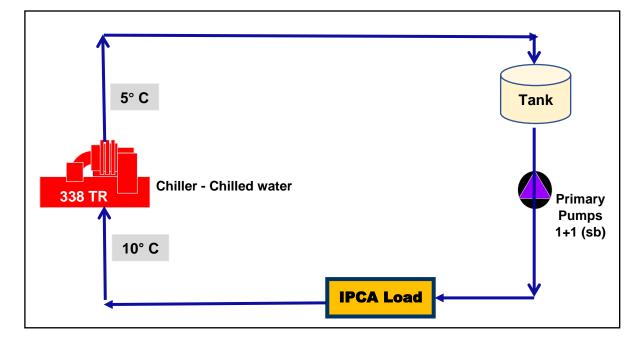
	Display Parameter		Set 1	Set 2	Set 3	Set 4	
	Date: 10.06.2022 & Time		11.30	12:50	02.50	03.25	
No	Parameter	Unit	am	pm Va	pm lue	pm	-
7	Refrigerant		I				
а	Temperature	°C	36.5	36.0	37.0	37.0	
b	Pressure	bar	8.14	7.86	8.34	8.34	
8	Specific Chilled Water Flow Rate	m ³ /h/TR	0.76	0.67	0.73	0.78	
	III) COM	PRESSOR	& MO1	T O R			
9	Refrigerant Discharge Temperature	°C	51.8	50.2	53.4	52.7	
10	Discharge Superheat		15.3	15.2	16.4	15.7	
11	RLA	%	73.5	68.0	74.0	73.0	
12	Power Consumption	kW	173.4	167.5	179.0	177.5	174
13	Specific Energy Consumption (SEC)	ikW / TR	1.09	1.06	1.08	1.12	

Based on the study outcome, a comparison is made on the typical process parameters that define the performance of the Chiller System. The details are presented in the Fig 10.7



**10.5.4 Typical Process Parameters : A Comparison** 




#### 10.5.5 Comments

- The chilled water temperature difference is low at 2.1 °C
- Specific energy consumption is quite higher (65% higher) when compared with the designed value.
- As such, the computed parameters have shown inferior parameters in comparison with the designed
- The condenser water flow rate can be enhanced.
- TDS of the condenser water needs continuous monitoring and keeping an eye on its levels

## 10.6 CIRCUIT NO 4: IPCA PLANT

#### 10.6.1 Preamble

- The chiller in this circuit meets the thermal load of IPCA plant.
- Only chilled water is used in this circuit with the designed evaporator temperatures of 5°C / 10°C . However, the present operating temperatures are 8.9°C / 11°C as measured by us
- The scheme of operation is shown in Fig 10.8





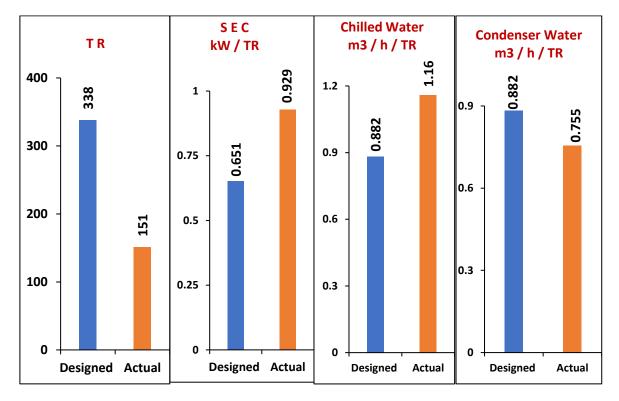
## 10.6.2 Design Parameters

Table 10.9 presents the designed parameters of this chiller plant

Table 10.9 : Circuit 4 : IPCA Plant : Design Parameters

No	Parameters	Unit	Value
1	Capacity	TR	338
2	Power Consumption	kW	220
3	Fluid Medium	-	Chilled Water
4	Evaporator : Chilled Water		
	a) Flow Rate	m³ / h	204
	b) Entering Temperature		10
	c) Leaving Temperature		5
	d) Pressure Drop	m WC	4.5
5	Condenser : Cooling Tower Wat	ter	
	a) Flow Rate	m ³ / h	298
	b) Entering Temperature	°C	36
	c) Leaving Temperature		32
	d) Pressure Drop	m WC	7.0
6	Specific Energy Consumption	kW / TR	0.651

## 10.6.3 Study Parameters + Performance Evaluation


- Only two sets of measurements have been taken on this chiller plant at 03:40 pm and 04:10 pm respectively.
- The details of the study are presented in Table 10.9

## Table 10.10 : Circuit 4 : IPCA Plant: Evaluated Parameters

	Displa	Set 1	Set 2			
	Date: 10.	03:40 pm	04:10 pm			
No Parameter Unit			Value			
I) EVAPORATOR						
1	Set Point °C		°C	5.5		
2	Chilled Water					
	a) Flow Rate		m³/h	175	175	
	b) Temperature Entering	°C	11.5	11.5		
	b) Temperature	Leaving		8.9	8.9	
	c) Pressure	Entering		3	3	

	Display Parameter Set 1 Set 2					
	Date: 10.	06.2022 & Time		03:40 pm	04:10 pm	j
No	Para	ameter	Unit	Value		
		Leaving	bar	2.5	2.5	
3	Refri	gerant				
а	Temperature		°C	4.4	4.4	
b	Pressure		bar	2.4	2.4	
4	Cooling Load Deliv	rered	TR	151	151	151
5	Specific Condense	r Water Flow Rate	m³/h/TR	1.16	1.16	
		II) CO	NDENSER	ł		
6	Condenser Wat	er				
а	Flow Rate		m³/h	114	114	
b	Tomporatura	Entering	°C	33.8	33.6	
U	Temperature	Leaving		38.2	38.0	
		Entering	hor	2.0	2.0	
С	Pressure	Leaving	bar	1.1	1.1	
7	Refrigerant					
а	Temperature		°C	42.4	42.4	
b	Pressure		bar	9.7	9.7	
8	Specific Condense	r Water Flow Rate	m ³ /h/TR	0.755	0.755	
	III	) COMPRESS	OR & MO	TOR		
9	Refrigerant Discha	rge Temperature	°C	55.4	54.4	
10	Discharge Superheat			10.7	10.8	
11	RLA		%	85	67	
12	Power Consumption	n	kW	140.0	140.4	
13	Specific Energy Co	onsumption (SEC)	kW / TR	0.927	0.93	

• The typical process parameters comparison is depicted in Fig 10.9



**10.6.4** Typical Process Parameters : A Comparison

#### Fig 10.9 : Performance Comparison : Typical Parameters

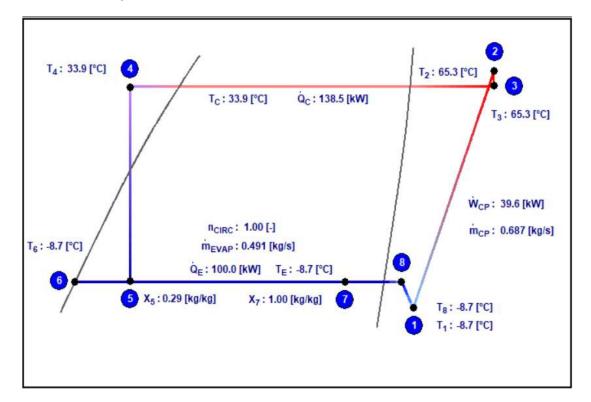
#### 10.6.4 Comments

- The specific power consumption is higher by almost **50%**
- Both the condenser water flow and chilled water flow rates are lesser than the designed
- The condenser & evaporator approach temperatures are high as observed by us
- The TDS of condenser water needs to be monitored regularly
- Another important aspect noted was the major portion of the CT water flows to the Process (73.5%) and only 115 m³ / h (26.5%) flows to the chiller condenser.
- The water flow rate designed is 298 m³ / h whereas the measured flow is only 115 m³ / h .This is abysmally low.
- The water circuit presently in use is the culprit and needs to be revamped to get the required water flow rate in the chiller condenser

#### **10.7 PERFORMANCE EVALUATION THRO' SIMULATION TOOL**

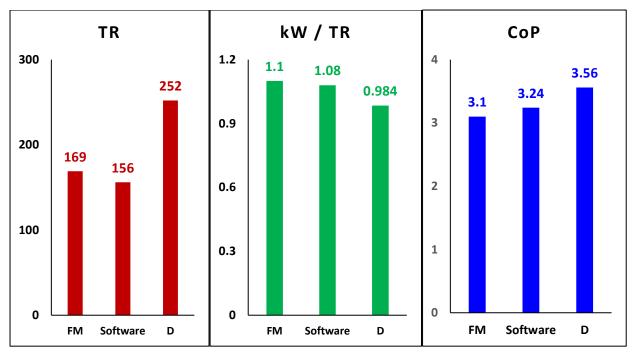
- The performance of all the 4 chillers have been evaluated through the measurement of flow rates of Chilled Water / Brine System and their corresponding temperature
- In addition, the power drawl of the compressor has also been recorded to arrive at the specific energy consumption
- In order to validate the parameters arrived at through measurements, a software tool, named, "Cool Pack" has been employed vet the findings. This software depicts the performance through the data recorded in respect of the refrigerant operating parameters
- The outcome of the simulation tool is tabulated below and also compared with that obtained through the actual field level measurements

#### 10.7.1 Chiller System : Aldehyde Plant


The following data - cum - table had been constructed based on the output obtained through the simulation package

No	Parameter		Unit	Aldehyde
1	Inlet Pressure	P ₁	bar (abs)	2.11
2	Inlet Temperature	T ₁	°C	- 8.7
3	Inlet Saturation Temperature	Γ _{sat}	C	- 8.7
4	Inlet Enthalpy	h₁	kJ / kg	392.08
5	Inlet Entropy	S ₁	kJ/ºC/ kg	1727
6	Outlet Pressure	P ₂	bar (abs)	8.6
7	Outlet Temperature	T ₂	°C	65.3
8	Outlet Saturation Temperature T	sat	C	33.9
9	Outlet Enthalpy	h ₂	kJ / kg	449.54
10	Outlet Entropy	<b>S</b> 2	kJ/ºC/ kg	1814.85
11	Isentropic Temperature	Γ' _{2'}	°C	39

 Table 10.11 Circuit 1b: Chiller System : Aldehyde Plant


No	Parameter		Unit	Aldehyde
12	Isentropic Enthalpy	h' _{2'}	kJ / kg	421.1
13	Isentropic Efficiency	η	%	50.5
14	Compressor Power Consumption	Р	kW	170.0
15	Motor Efficiency	η	%	95
16	Compressor Shaft Power	Ps	kW	161.5
17	Cooling Load Delivered		TR	156
18	COP (Including Motor Losses)		-	2.40
19	Specific Power Consumption	SPC	kW / TR	1.08

• The pressure - enthalpy diagram simulated for the refrigeration cycle employed is shown in Fig 10.10



#### Fig 10.10 : Pressure Enthalpy Diagram: Chiller System : Aldehyde Plant

• The performance comparison of this chiller by both the methods viz., field measurements & simulation tool is shown below :



## Fig 10.11 : Performance Comparison of Typical Parameters : Aldehyde Plant

• It can be seen that there is a fair agreement on the typical performance defining data of the system

## 10.7.2 Chiller System : Pharma Plant

• Data simulated through the software is tabulated below :

No	Parameter		Unit	Pharma
1	Inlet Pressure	P ₁	bar (abs)	2.55
2	Inlet Temperature	T ₁	°C	-3.8
3	Inlet Saturation Temperature	T _{sat}	0	-3.8
4	Inlet Enthalpy	h₁	kJ / kg	395.01
5	Inlet Entropy	S ₁	kJ / ⁰C / kg	1724
6	Outlet Pressure	P ₂	bar (abs)	8.7
7	Outlet Temperature	T ₂	°C	48.3
8	Outlet Saturation Temperature	T _{sat}	C C	34.3
9	Outlet Enthalpy	h ₂	kJ / kg	431.09
10	Outlet Entropy	<b>S</b> ₂	kJ / ⁰C / kg	1758.08
11	Isentropic Temperature	T'2'	°C	38.55
12	Isentropic Enthalpy	h' _{2'}	kJ / kg	420.3
13	Isentropic Efficiency	η	%	70.2
14	Compressor Power Consumption	Р	kW	135.0
15	Motor Efficiency	η	%	95

## Table 10.12 : Circuit 2 : Chiller System : Pharma Plant

No	Parameter		Unit	Pharma
16	Compressor Shaft Power	Ps	kW	128.3
17	Cooling Load Delivered		TR	89
18	COP (Including Motor Losses)		-	2.30
19	Specific Power Consumption	SPC	kW / TR	1.52

• The Pressure - Enthalpy diagram simulated is shown below :

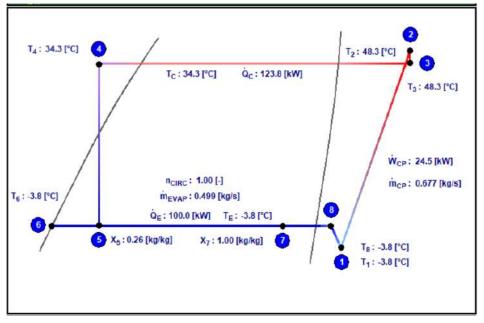
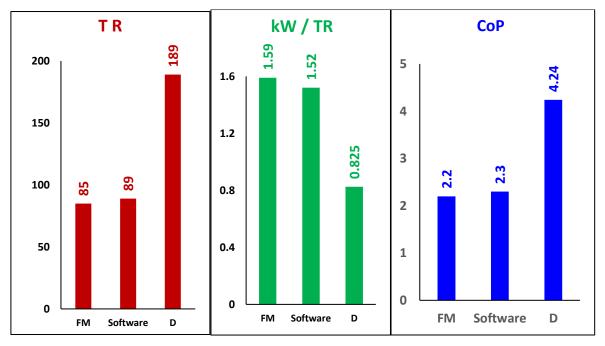
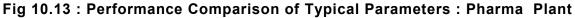
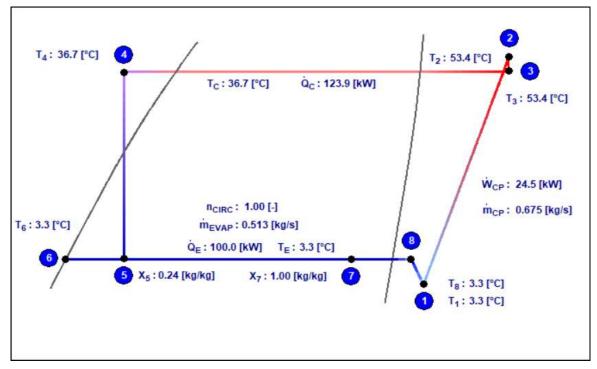





Fig 10.12 : Pressure Enthalpy Diagram : Chiller System : Pharma Plant

• The performance comparison of this Pharma chiller by both the methods viz., field measurements & simulation tool is shown below :






• It can be seen that there is a fair agreement on the typical performance defining data of the system

## 10.7.3 Chiller System : I B U Plant

• Table 10.13 presents the outcome of "Coolpack " simulation package employed

Table 10.13 : Circuit 3 : Chiller Plant : I B U Plant

No	Parameter		Unit	IBU
1	Inlet Pressure	P ₁	bar (abs)	3.29
2	Inlet Temperature	T ₁	°C	3.3
3	Inlet Saturation Temperature	T _{sat}	C	3.3
4	Inlet Enthalpy	h₁	kJ / kg	399.08
5	Inlet Entropy	S ₁	kJ / ⁰C / kg	1720
6	Outlet Pressure	P ₂	bar (abs)	9.3
7	Outlet Temperature	T ₂	°C	53.4
8	Outlet Saturation Temperature	T _{sat}		36.7
9	Outlet Enthalpy	h ₂	kJ / kg	435.42
10	Outlet Entropy	<b>S</b> ₂	kJ / ⁰C / kg	1766.87
11	Isentropic Temperature	<b>T'</b> 2'	°C	40
12	Isentropic Enthalpy	h' _{2'}	kJ / kg	420.5
13	Isentropic Efficiency	η	%	59.0
14	Compressor Power Consumption	Р	kW	175.0
15	Motor Efficiency	η	%	95
16	Compressor Shaft Power	Ps	kW	166.3
17	Cooling Load Delivered		TR	163
18	C O P (Including Motor Losses)		-	3.23
19	Specific Power Consumption	SPC	kW / TR	1.07



• The Pressure - Enthalpy diagram simulated is shown below :

Fig 10.14 : Pressure Enthalpy Diagram: Chiller System : I B U Plant

• The performance comparison of this I B U chiller by both the methods viz., field measurements & simulation tool is shown below :

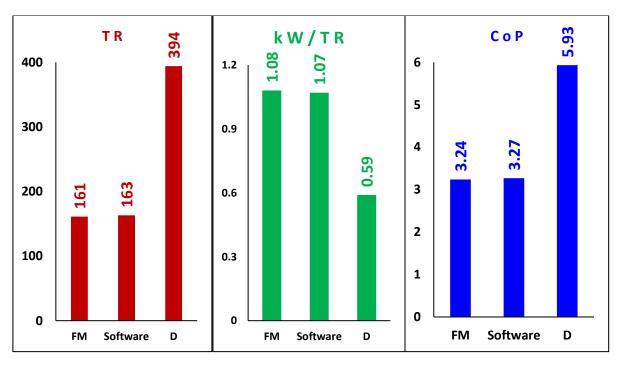
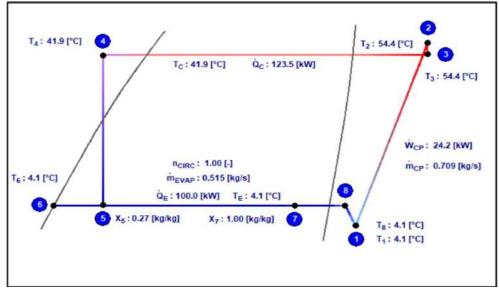


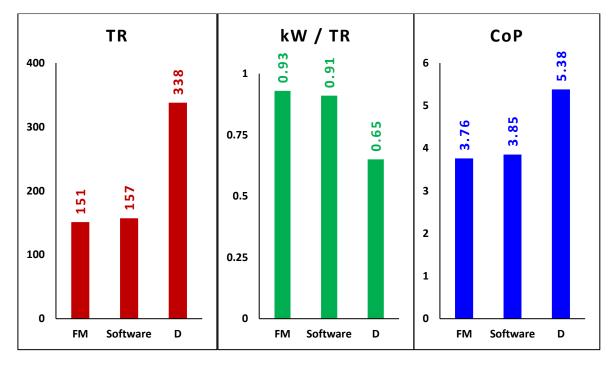

Fig 10.15 : Performance Comparison of Typical Parameters : I B U Plant

• It can be seen that there is a fair agreement on the typical performance defining data of the system


## 10.7.4 Chiller System : I P C A Plant

• The parameters arrive data through the software package is tabulated below :

No	Parameter		Unit	IPCA
1	Inlet Pressure	<b>P</b> ₁	bar (abs)	3.39
2	Inlet Temperature	T ₁	°C	4.1
3	Inlet Saturation Temperature	T _{sat}	J	4.1
4	Inlet Enthalpy	h₁	kJ / kg	399.57
5	Inlet Entropy	<b>S</b> 1	kJ / ⁰C / kg	1720
6	Outlet Pressure	P ₂	bar (abs)	10.7
7	Outlet Temperature	T ₂	°C	54.4
8	Outlet Saturation Temperature	T _{sat}	C	41.9
9	Outlet Enthalpy	h ₂	kJ / kg	433.65
10	Outlet Entropy	<b>S</b> ₂	kJ / ⁰C / kg	1752
11	Isentropic Temperature	T'2'	°C	45.45
12	Isentropic Enthalpy	h' _{2'}	kJ / kg	423.3
13	Isentropic Efficiency	η	%	69.6
14	Compressor Power Consumption	Р	kW	140.0
15	Motor Efficiency	η	%	95
16	Compressor Shaft Power	Ps	kW	143
17	Cooling Load Delivered		TR	157
18	COP (Including Motor Losses)		-	3.85
19	Specific Power Consumption	SPC	kW / TR	0.91


Table 10.14 : Circuit 4 : Chiller Plant : I P C A Plant

• The Pressure - Enthalpy diagram simulated for IPCA Chiller is shown below :





• The performance comparison of this IPCA chiller by both the methods viz., field measurements & simulation tool is shown below :



## Fig 10.17 : Performance Comparison of Typical Parameters : I P C A Plant

• It can be noticed that there is a reasonably fair agreement on the typical performance defining data of the system

## 10.7.5 Sum - Up

- The performance of all the four chillers [ Aldehyde, Pharma, IBU & IPCA ] had been evaluated through
  - (i) Field level measurements of operating parameters and subsequent computations
  - (ii) Simulation software that uses the operating refrigerant properties ( Cool Pack Software ) to arrive at the performance data

#### and are compared

- The outcome of both the methods showed not much of variance as can be seen through the charts of this section.
- This also reinforced the validity of the field level measurements carried out.

- Major Take away from the study on chiller is the inferior performance of Chillers catering to Pharma Plant, IBU plant and IPCA.
- Only the chiller of aldehyde plant shows any resemblance towards operating to the designed value.
- In essence, it has been found that the T R delivered of all the chillers are much lower than the designed and the major culprit seems to be the lesser cooling water flow rate through the condenser.
- Suggestions are made in the ensuing sections No :11 to enhance the chiller performance

## 10.8 VAM Chiller

#### 10.8.1 Preamble

- The VAM Chiller has a design rating of 480 TR and uses steam as the driving force
- It is associated with Circuit 3 that delivers chilling load to I B U Plants
- A performance trial was taken on this V AM chiller also and the details are discussed in this section

## 10.8.2 A Comparison : Designed vs Actual Parameters

- A performance study has been undertaken on this VAM Chiller in order to establish the operational effectiveness of this Chiller and economics of its operation since VAM uses "**live steam**" as the main energy source.
- Table 10.15 presents the information captured during the study

VAM 480 TR							
No	No Parameter Unit Design Actual - 1 Actual						
Cooling Capacity T R 480 79 45							
	Steam Circuit - Heat In						
1	1         Steam Inlet Valve : Limit         %         100         100         50						
2         Steam Inlet Valve : Open Position         %         100         71         50							
3	Steam Flow Rate	kg / h	1982	1004	630		

VAM 480 TR								
No	Parameter	Unit	Design	Actual - 1	Actual - 2			
	Chiller Wate	er - Heat	Input					
4	Chilled Water In / Out Temp	°C	10 / 5	7.2 / 5	8 / 6.7			
5	Chilled Water Flow	m³/ h	289.3	104	104			
	Condenser -	Heat rej	ected					
6	Cooling water In / Out Temp	°C	36.3 / 33	29.7 / 32	30.2 / 31.4			
7	Cooling Water Flow	m³/ h	790	300	300			
8	U Tube Temperature	°C	-	31.4	32.9			
	High Temperature Generators	& Conce	ntration	of LiBr Sol	ution			
9	Spray Solution Temperature			46.8	46			
10	HTG Top Temperature	%		110.6	110.6			
11	HTG Bottom Temperature	70		110.4	110.4			
12	HTG Temperature			113	113			
13	LTG Temperature			67	66			
14	HTG Vapour Temperature	°C		70.5	70.3			
15	Dilute Temperature			31.1	31.8			
16	Dilute Solution Concentration			54	54			
17	Intermediate Solution Concentration	%		55.2	55.2			
18	Strong Solution Concentration	70		58.5	54.4			

- It can be seen that there is a wide difference in the T R achieved with reference to that designed.
- Likewise , the flow rates of steam as well as that of chilled water were also quite less ,

#### 10.8.3 CoP & SSC Evaluation

- A dedicated study had been carried out on VAM Chiller with an objective of evaluation of CoP & Specific Steam Consumption (SS C) and thereby the efficiency of operation as well the deviation, if any, from the designed values
- The data captured & computed are tabulated below :

			Steam			Chilled	d Water				
No	Time	Valve	Valve	Flow Rate	Tem	p ° C	Flow	Tons	СоР	SSC	
		Limit %	Set %	kg / h	in	out	m ³ / h	TR		kg / h / TR	
-	Design	100	100	1982	10	5	290	478	1.26	4	
1	12 :10 pm	50	44	530	7.2	6	104	41	0.41	13	
2	12 : 36 pm	50	47	1000	7.1	5.9	104	41	0.22	24	
3	12 : 54 pm	100	71	1004	7.3	5	104	79	0.41	13	
4	01 : 44 pm	50	50	630	8	6.7	104	45	0.37	14	
5	03 :39 pm	55	55	670	7.6	6.3	104	45	0.35	15	
6	05 : 00 pm	55	55	630	6.8	5.4	104	48	0.40	13	

 Table 10.16 : VAM Chiller:
 CoP & SSC Evaluation

#### **10.8.4 Observation & Comments**

- The chilling load delivered was hardly 20 % of the designed value ( it was always less than 50 TR )
- Chilled water flow rate too was on the lower side [ 100 m³ / h vis a vis 290 m³ / h as designed ] and this is partly due to the throttling of inlet valve.
- These happenings had resulted in the attainment of very low CoP and very high SSC
- The following chart provides this information pictorially

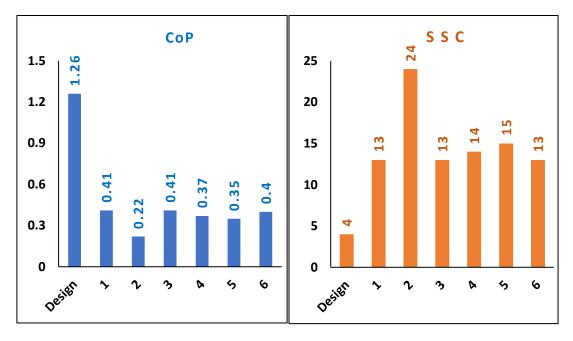



Fig 10.18 : CoP & SS C : Designed vs Recorded : VAM Chiller

• The set point - in terms of steam valve opening could not go beyond 71% at which point the system trips and gets switched off. This is to say that the VAM system could not be operated to its full load capacity at any point of time.

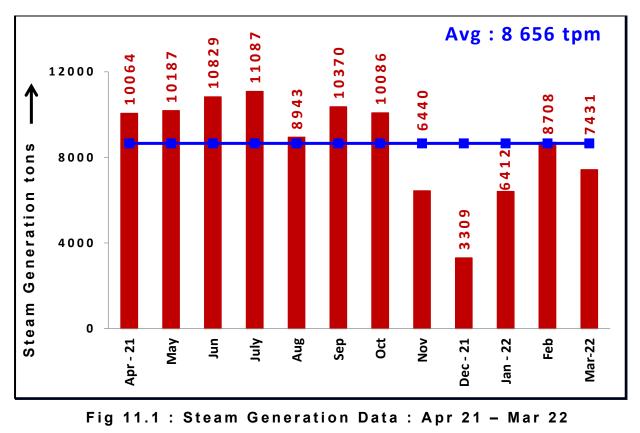
#### 10.8.5 Sum Up

- As a summing up exercise, it can be concluded that the operational efficiency of VAM Chiller is quite low and on top of it, it could not be loaded beyond 70 %. This is alarming.
- Hence, the suggestion is to discontinue the use of VAM Chiller to the extent possible



# ENERGY

# CONSERVATION


# PROPOSALS

#### ECM 1 STRATEGIC CO FIRING OF SIZED WOOD (CASUARINA) WITH CONVENTIONAL AGRO-BRIQUETTES IN THE PROCESS BOILER AS A COST CONSERVATION MEASURE OF

Cost Savings	Investment	Payback Period
₹ / y	₹	Months
58 00 000	Nil	Immediate

#### Observation

- The plant has a 16 tph (f & a 100°C) Air Cooled Step Grate Furnace with Multizone Combustion - operating with agro briquettes as the source of energy - that caters to the process steam / thermic heat requirement of the plant.
- Based on the historic data provided by the plant personnel, it has been realised that the boiler operates at a near full - load and the average steam generation has been estimated as 14 tph as against the designed rating of 16 tph.



• The month wise steam generation is presented in Fig 11.1

- It has been captured from the historic data that the steam generation and the corresponding briquette consumption for one year period [Apr 21 to Mar 22] were 1 03 866 tons and 20 833 tons respectively [for Forbes Vyncke boiler]
- This brings in a steam fuel ratio (SFR) of 5.0 which is reasonable enough for a briquette having a GCV of 3900 kcal / kg
- The boiler thermal efficiency has been estimated to be in the range of 75 77 % which is a very standard value indicating a fair operation of the boiler form technical standpoint
- The landed cost of briquettes has been considered as ₹ 7000 / ton ( annual average ) and this makes the fuel cost of steam to be ₹ 1 400 / ton ( only fuel cost )
- It is felt that a properly sized and appropriately harvested wood of fairly burnable quality can be co burned with the agro briquette as a means of cost conservation since the cost of wood would be certainly lesser expensive than that of briquettes.
- This option is suggested as a means of cost conservation

#### Recommendations

- Therefore, we recommend substituting a minor portion (say 10% to start with) of agro briquettes with sized / dried Casuarina wood and burned in the boiler. Casuarina wood of moisture content 25% and less is suggested for co burning.
- Based on the techno commercial performance of this venture. further course of action
   by way of enhanced level of briquette substitution can be planned.
- Thus, this recommendation of partial substitution of agro briquettes with casuarina wood

#### Economics

#### Present Scenario

Briquette consumption	≈	20 833 tons / y
Cost spent of briquettes	=	(20 833 tons / y x ₹ 7000 / ton ) = ₹ 14.58 Crores / y

#### Proposed Scenario

Briquette usage recommend	ed	= 18 000 tons / y
Wood usage suggested		= 2 833 tons / y
[ briquette and wood shall ha	ave	matchable GCV and hence can be equated 1:1 in mass ]
Cost of Briquette	=	₹ 7 000 / ton
Cost of wood	=	₹ 5000 / ton
Hence fuel cost expected	=	(18 000 tons / y x ₹ 7000 / ton ) + ( 2833 tons / y x ₹ 5000 / ton)
	=	₹ 14 Crores / y
Cost savings	=	₹ 58 00 000 / y
Investment	=	Nil
Simple Payback Period	=	Immediate

## RECOVERY OF CONDENSATE FROM THE STEAM TRAPS THAT ARE OPEN TO AMBIENT AND HAVE NO COLLECTION MECHANISM

Cost Savings	Investment	Payback Period
₹ / y	₹	Months
3 16 386	8 00 000	30

#### Observation

ECM

2

- There are 41 Steam Traps installed across the Header Lines in the utility area
- Out of 41 Steam Traps installed, 20 traps are open to ambient, and the condensate drained from the traps is let to the atmosphere . These condensates are typically uncontaminated as these come out of main Steam Distribution Line

#### Comments

- Steam traps are majorly installed across the main line of 4" and 6" diameter size at approximately 30 m distance apart
- The surface temperatures of these traps are measured to be around 60 °C
- For ambient temperature of 35°C, the theoretical condensates generated in 4" and 6" pipeline are 12.5 kg / h and 15 kg / h respectively
- Since the condensate goes to drain without ever getting recovered, the condensate recovery can be attempted in these locations for the simple reason of fuel conservation
- The condensate generated is estimated as 12 kg / h / trap (on a conservative basis) and that is targeted for recovery / collection.

#### Recommendation

- Collect the condensate coming out of steam traps of Main Header Line
- Install a Pressure Powered Pump Package Unit ( PPPPU ) for the recovery of condensate. This can pump the condensate back to Deaerator and can be operated with steam pressure of 2.5 to 3 kg / cm²
- Implementation of this scheme is sure to bring both in energy and cost saving

Condensate recovery planned from a stean	= 12 kg / h	
Total number of steam trap that do not have	e collec	tion mechanism = 20
Hence, cumulative condensate recovery po	ssible	= (20 x 12 x 24) kg / day
	=	5 760 kg / day
Temperature of condensate	=	100°C
Temperature of RO water going to Deaerat	or =	35°C
Energy content of condensate	=	[ 5 760 x ( 100 – 35 )]
	=	3 74 400 kcal / day
Hence, fuel equivalent	=	[ 3 74 400 / (3900 x 75 % )]
	=	128 kg / day
	=	( 128 kg / d x 350 d /y ) / 1000
	=	45 tons/y
Cost of Biomass Briquettes`	=	₹ 7 000 / ton
Cost Savings	=	[45 tons /y x ₹ 7000 / ton ]
	=	₹315000/y - (A)
Cost of Raw Water	=	₹6/kL
Cost saving by water conservation	=	(5.76 k L / d x 350 d / y x ₹ 6 / kL )
	=	₹12096/y - (B)
Steam consumption in PPPPU @ 3 kg / kL	=	(5.76 kL /day x 3 kg / kL )
	=	17 kg / d
Cost Incurred in steam	=	(17 kg / d x 350 d / y x ₹ 1.80 / kg)
	=	₹10710/y -(C)
Total cost savings	=	(A)+(B)-(C)= (3 15 000 + 12 096 + 10 710)
	=	₹316386/у
Investment	=	₹800000
Simple Payback Period	=	30 months

# REDUCING THE THERMAL ENERGY LOSS BYECMREDOING THE INSULATION WORK AFRESHIN IDENTIFIED LOCATIONS THAT HAVEEITHER DAMAGED INSULATION / PEELEDOFF INSULATION EXPOSING BARE SURFACE

Cost Savings	Investment	Payback Period
₹ / y	₹	Months
25 92 800	20 00 000	9

#### Introduction

- Uninsulated steam distribution and condensate return lines are a constant source of wasted energy
- Insulation can typically reduce the heat losses by 90 % and help to ensure proper steam pressure at utility locations
- Any surface having a temperature over 60 °C should be insulated, including boiler surfaces, steam and condensate return piping, flanges, valves, fittings etc.,
- Insulation frequently becomes damaged or removed for various reasons and normally
   not replaced during maintenance schedule
- Damaged or wet insulation should be repaired / replaced immediately to avoid compromising the insulating value

#### Observation

- Our insulation survey had revealed the existence of damaged insulation, bare surfaces, tattered insulation materials etc in a couple of locations
- We could identify 28 such locations where the insulation has to be redone.
- A detailing of this is presented in Section 5.7

#### Comment

 It has been observed - through our detailed Energy Audit Study and visual observation of the steam distribution system - that the insulation has given way in as many as 28 locations and therefore have to be redone / restored

- It was noticed that the Steam Headers and Condensate Recovery Lines are formidable in distance and need effective insulation repairing
- Thus, there exists equitable scope for curtailing the thermal loss by way of attending to this work of maintenance of insulation in proper condition
- It may be noted that the thermal mapping had been done on major steam header / Sub header as well in major condensate return lines only. Not all steam / condensate lines have been mapped due to the enormity of the job involved.
- The following Table 11.1 provides information on the locations identified where the insulation is either damaged / given way / not present

Table 11.1 : Damaged Insulation : Identification and Temp Measurements

No	Location	Temp °C	Remarks		
	Boiler Room	I.			
1	Header to Turbine - near U bend	220			
2	Header to Turbine U bend (before and after Turbine)	220	Damaged		
3	Vertical Line (from boiler PRV station)	220	Damagoa		
4	Turbine Inlet Separator	220			
5	Turbine Inlet : 6" $\phi$ Line after Separator	220			
6	Before Turbine Inlet : Condensate Recovery Line	65			
7	After Turbine Header	180	No insulation		
8	After PRV	164			
9	After PRV	115			
10	After PRV HP Line Rack (1)	170			
11	After PRV HP Line Rack (2)	170	Insulation Damaged		
12	Condensate Line HP Line Eq No : MSST 2182	264	Insulation Damaged		
13	Condensate Line HP Line Eq No : MSST 2182	100			
14	LP - Line U bend	147			
15	HP Line PRV : MSST 2163	170	No insulation		
16	Condensate Storage Tank : PPPU	140	INO INSUIATION		
17	Condensate Storage Tank : PPPU	150			

No	Location	Temp °C	Remarks		
18	Condensate Area : PPPU	140	Insulation Damaged		
19	Condensate Line	140	No inculation		
20	HP Steam Line : opposite to Chiller Plant	160	No insulation		
21	Condenser : HP Line	100			
22	Condensate Line near VAM Chiller	125	Insulation Damaged		
23	Near DM plant : Air Compressor back side	105			
24	VAM Chiller : Trap Line	105	No insulation		
25	VAM Chiller : Heat Exchanger	150	Insulation Damaged		
26	Old PRV Header	148			
27	Boiler : opp to Condensate Line from MSST 2220	100	No Insulation		
28	High Vacuum Header Line	170			

#### Recommendation

- Therefore, it is recommended to set right the damaged / missing insulation as a means of curtailing the energy loss
- The energy loss estimation is given below in Table 11.2

#### Economics

#### Table 11.2: Rectification of Damaged Insulation : Heat Loss Estimation

			Surface	Surf	ace Area	Α	mbient T = 2 Heat Loss	
No	Area	Location			Insulated	Bare Surface	Insulated	Avoidable
			°C		m ²		Kcal / h	
1		Second Boiler before PRV	210	0.4	2.0	1 454	561	894
2	Boiler House	Header to Turbine Near U bend	220	0.5	1.0	1 704	269	1 435
3		Header to Turbine U bend before and after Turbine	220	0.2	0.5	852	135	718
4		Vertical line from the Boiler PRV Station	220	3.8	7.7	13 633	2 153	11 480

		Surface Area		ace Area	Ambient T = 25 °C			
No	A.r.o.o	Location	Surface Temp			Heat Loss		
NO	Area	Location	Temp	Bare	Insulated	Bare Surface	Insulated	Avoidable
			<b>°C</b>		m²		Kcal / h	
5		Turbine line inlet Separator	220	1.0	1.4	3 408	404	3 005
6	Boiler House	Turbine inlet 6 " line after Separator	220	1.4	2.9	5 113	808	4 305
7		After Turbine Header	180	1.4	2.3	3 591	646	2 945
8		after PRV	164	0.6	1.8	1 269	505	765
9		after PRV	115	0.6	1.8	670	505	165
10	Main Line	HP Line rack	170	4.8	9.6	10 821	2 692	8 129
11	Main Line	HP Line rack	170	14.4	28.7	32 463	8 075	24 387
12	HP Line Equipment Number MSST 2182 Normalization Condensate Pump Area	Condensate Line	264	2.4	6.4	11 753	1 795	9 958
13	HP Line Equipment Number MSST 2182 Normalization Condensate Pump Area	Condensate Line	100	8.0	19.9	6 869	5 608	1 261
14	Normalization Condensate Area	L P Line U bend	147	0.8	3.2	1 393	897	496
15	Equipment Number MSST 2182 Normalization Condensate Pump Area	PRV Station	170	0.5	2.9	1 082	808	275
16	Condensate Storage Tank	PPPU	140	0.84	4.2	1 345	1 181	164
17	Condensate Storage Tank	PPPU	150	0.6	1.4	1 156	404	752
18	Condensate Area	LP line	140	1.9	3.8	3 065	1 077	1 988

				Surf	ace Area	Ambient T = 25 °C			
			Surface	Juli			Heat Loss	5	
No	Area	Location	Temp	Bare	Insulated	Bare Surface	Insulated	Avoidable	
			°C		m²		Kcal / h		
19	Condensate Recovery Area	Condensate Line	140	6.0	16.0	9 578	4 486	5 092	
20	Chiller Plant	HP Steam opposite to Chiller Plant	160	4.0	23.9	8 100	6 729	1 371	
21	Condensate Line	HP Line TD	100	14.4	10.4	12 364	2 916	9 448	
22	Coming from Plant near VAM Header	Condensate Line	125	16.9	52.6	22 117	14 805	7 313	
23	Near DM Plant	Compressor Backside	105	1.6	4.8	1 507	1 346	162	
24	VAM Chiller	Trap Line	105	3.2	9.6	3 015	2 692	323	
25	VAM Chiller	Heat Exchanger	150	23.6	39.3	42 655	11 039	31 616	
26	Old PRV Header	LP Line	148	6.4	25.5	11 284	7 178	4 106	
27	Boiler Opposite Plant Backside	Condensate Line from MSST 2220	100	12.0	31.9	10 303	8 973	1 331	
28	High Vacuum Header Line		170	5.4	37.3	12 174	10 487	1 687	
			Total					1 35 569	

Avoidable Heat Loss	=	1 35 569 kcal/h
Loss Equivalent of Fuel	=	(1 35 569 kcal / h)/(3900 kcal / kg x 75 %)
	=	46.3 kg/h = (46.3 kg/h x 8 000 h/y)
	=	3 70 400 kg/y
Cost of Briquette	=	₹ 7.0 / kg
Cost Savings	=	(370 400 kg/yx ₹7/kg)
	=	₹ 25 92 800 / y
Investment	=	₹ 20 00 000
Simple Payback Period	=	9 months
	=	₹ 20 00 000

# ECMIMPROVEMENT OF POWER FACTOR BY<br/>RECTIFYING THE NON- OPERATIONAL /<br/>FAILED CAPACITOR BANKS IN ORDER TO<br/>SAVE ON THE ENERGY COST PAYABLE TO<br/>PUDUCHERRY ELECTRICITY DEPT

Cost Savings	Investment	Payback Period	
₹ / y	₹	Months	
21 42 800	15 00 000	9	

#### Observation : 1

- The plant has installed capacitor banks with a cumulative rating of 2800 kVAR
- Of this, 500 kVAr was not working rendering only 2300 kVAR as the effective capacitance available
- A performance study conducted on 5 Capacitor Banks has yielded the following results:

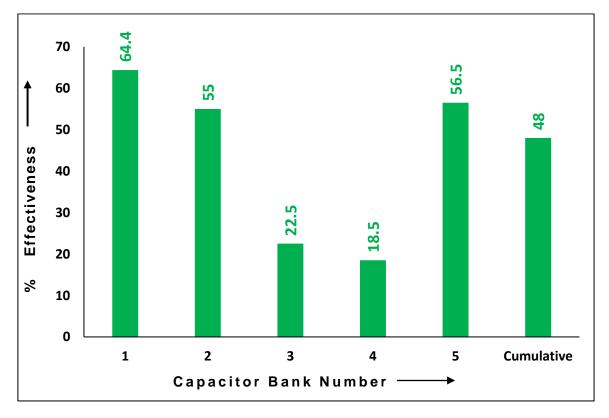



Fig 11.2 : Effectiveness of Capacitor Banks

• The outcome is that only 1345 kVAr was effective accounting for 48 % as overall effectiveness.

#### Observation : 2

• The power factor recorded was lesser than 0.99 in all these 4 months as can be seen Fig 11.3

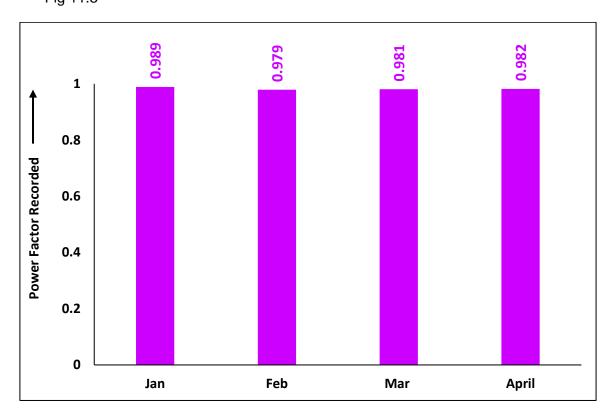



Fig 11.3 : Power Factor Recorded : Jan 21 – Apr 22

- Since the electricity is charged as per kVAh consumption, it is of ultimate importance that the power factor is maintained as close as possible to unity
- The PED charges the clients on the basis of kVAh consumed and not on kWh consumption

#### Recommendations

- The non working & failed capacitors are to be replaced at the earliest and the PF level is brought back to 0.995 at the minimum if not unity
- This would enable considerable cost saving

#### Economics

• The electricity consumption details for the past 4 months of Y - 2022 is as below :

No	Month	kVAh Consumption	kWh Consumption	PF	kVAh Consumption anticipated had PF been maintained at 0.995	Difference (Savings possible)
1	Jan - 22	16 26 290	16 08 520	0.989	16 16 603	9 687
2	Feb	19 62 680	19 21 710	0.979	19 31 367	31 313
3	Mar	20 31 380	19 92 220	0.981	20 02 231	29 149
4	Apr	19 25 980	19 25 980	0.982	19 35 658	34 890
<u> </u>					Total	1 05 039

 Table 11.3 : Energy Consumption Details : Jan - Apr 2022

kVAh savings possible	=	1 05 039 kVAh in 4 months
kVAh Savings possible	=	( 1 05 039 / 4 months ) x 12 months / y
	=	3 15 117  kVAh / y
Cost savings	=	( 3 15 117 kVAh / y x ₹ 6.80 / kVAh)
	=	₹ 21 42 800 / y
Investment	=	₹ 15 Lakhs
Simple Payback Period	=	9 Months

CONSTRUCTION OF ADDITIONAL POWER HOUSE NEAR THE BOILER PLANT WITH A VIEW TO (i) CONTAIN THE EXCESSIVE LOAD EXPERIENCED IN THE PRESENT POWER HOUSE (ii) REDUCE THE DISTRIBUTION LOSSES OCCURRING IN POWER TRANSMISSION TO ZLD PLANT

Cost Savings	Investment	Payback Period
₹ / y	₹	Months
48 79 000	1 50 00 000	36

#### Observation

- A thermographic mapping combined with power measurement study conducted in the powerhouse of the plant has revealed the present occurrence of overloading of the entire powerhouse system, as it draws around 3.5 MW of power currently.
- Most of the outgoing cables of the SSBs are quite hot again indicating the overloading occurrence.
- Secondly, it has been recorded through the power measurement that the distribution losses between the powerhouse and the Z L D plant accounts for an energy loss of 860 kWh / d
- The ZLD plant is located quite far away from the powerhouse.
- On cumulation, it is estimated that the T & D losses would account for 10% at the present scheme of things

#### Comment

Considering the quantum of energy handled by the plant (82 000 kWh / d) and the distribution losses occurring [@ 10%] in power transmission, it would not be out - of - place to recommend the construction of an additional powerhouse near the existing boiler plant

- The advantage is 3 fold :
  - (i) Existing unbearable power load of the powerhouse would get reduced safeguarding, thereby, all the cables and associated switchgears
  - (ii) Bringing down the T & D losses to a reasonable extent
  - (iii) Addressing effectively the issues related to safety of plant as the temperature inside the powerhouse exceeds 40 °C always

#### Recommendation

- Hence, our recommendation is the construction of another Powerhouse near the boiler and optimise / reduce the energy loss in addition to safeguarding the existing power house operation
- The suggested infrastructures would include
  - > 3000 kVA Transformer with OLTC
  - > MV panel with proper switch gear
  - > Armoured cables with higher current capacity
  - > APFC Panels etc.,
- The total load of the plant can be shared in these two power houses in an optimised fashion

Energy consumption : present	= 82 000 kWh / d
Energy saving anticipated @ 2.5 %	= 2 050 kWh / d
	= (2050 kWh / d x 350 d / y )
	= 7 17 500 kWh / y
Cost savings	= (7 17 500 kWh / y x ₹ 6.80 / kWh)
	= ₹4879000/y
Investment	= ₹ 1.5 Crores
Simple payback period	= 36 months

### REDUCING THE COOLING ENERGY LOSS BY REDOING THE INSULATION WORK AFRESH IN IDENTIFIED LOCATIONS - THAT HAVE EITHER DAMAGED INSULATION /PEELED OFF INSULATION EXPOSING BARE SURFACE

Cost Savings	Investment	Payback Period
₹ / y	₹	Months
3 00 288	1 50 000	6

#### Observation

ECM

6

- Uninsulated Chilled Water /Brine lines are a constant source of wasted energy
- Insulation can typically reduce the energy losses by 90 % and help ensure proper cooling at process equipment
- Any surface having a temperature below 20 °C should be insulated, including Chiller
   Surfaces, Chilled Water / Brine piping, flanges, valves and fittings
- Insulation frequently becomes damaged or removed for various reasons and normally not replaced during maintenance schedule
- Damaged or wet insulation should be repaired / replaced immediately to avoid compromising the insulating value
- Our insulation survey had revealed the existence of damaged insulation, bare surfaces, tattered insulation materials etc in a couple of locations
- We could identify close to 16 locations where the insulation has to be redone.
- A detailing of this is presented in Chapter 5

#### Comment

- It has been observed through our detailed Energy Audit Study and visual observation of the Chilled Water / Brine Distribution System - that the insulation has given way in as many as 16 locations and therefore has to be redone / restored
- Thus, there exists equitable scope for curtailing the cooling energy loss by way of attending to this work of maintenance of insulation in proper condition

#### Recommendation

- Therefore, it is recommended to set right the damaged insulation as a means of curtailing the energy loss
- This action is certain to pay for itself in short run

#### Economics

#### Table 11.4 : Rectification of Damaged Insulation : Cooling Loss Estimation

Nia	<b>A</b> 110 G	Lessier	TemperatureSurface Area°Cm²			Cool	ing Loss kca	l / h	
No	Area	Location	Bare Surface	Amb	Bare	Insulated	Bare Surface	with insulation	Avoid able
1		Methanol Tank Pump	1	31	2.00	5.30	685	316	369
2	Near VAM	Methanol Tank Header	1	31	0.38	0.67	131	40	91
3	Chiller	Methanol Top Header	1	31	1.99	3.63	685	220	465
4		Methanol Tank Bottom Header from the Chiller	1	31	0.96	1.91	330	118	212
5	Chiller Area	IBU – 2 ( UCCH - 2019 ) Chiller End Cap	2	31	1.13	1.77	375	109	266
6		Chiller Evaporator	18	31	15.07	18.8	2 087	1 164	922
7	IBU - 1	Process Pump	6	31	0.28	0.47	79	29	50
8	( UCCH - 2019 )	Chilled Water Line to Process Pump	20	31	0.5	0.8	56	49	6
9	Chilled Water Tank ( UMST 2147 )	Front Side Process Pump	6	31	31.4	62.8	8 949	4 081	4 868
10		Chiller End Cap		31	0.79	1.13	320	75	245
11	Pharma Chiller (UCCH – 2022 )	On the Circumference in the Chiller	1	31	15.07	18.84	5 278	1 244	4 034
12		Chiller Out Pipe	14.2	31	0.38	0.63	72	41	30

No	Area Location		Temperature °C		Surface Area m ²		Cooling Loss kcal / h		
NO	Alba	Location	Bare Surface	Amb	Bare	Insulated	Bare Surface	with insulation	Avoid able
13		Chiller End Cap		31	1.07	1.77	1 134	117	1 018
14	UCCH - 2018	Chiller Evaporator	15.8	31	15.07	18.84	2 535	1 244	1 290
15		Chiller Compressor		31	0.64	1.04	262	68	194
16	UCCH-2022	Chiller inlet Pipe	20.3	31	0.64	1.04	75	68	6
Total						14 049			

Avoidable Cooling Loss	=	14 049 kcal / h
	=	( 14 049 kcal / h ) / ( 3 024 kcal / T R )
	=	4.6 T R
Average Chiller SPC	=	1.2 kW/TR
Equivalent Electrical Consumption	=	[ 4.6 TR x 1.2 kW / TR x 8 000 h / y ]
	=	44 160 kWh / y
Cost savings	=	(44 160 kWh / y x ₹ 6.8 / kWh)
	=	₹300288/y
Investment	=	₹ 1 50 000
Simple payback period	=	6 months

### i)FITMENT OF VARIABLE FREQUENCY DRIVE TO PRIMARY PUMPS & ii)INSTALLATION OF IN - LINE CONDENSER

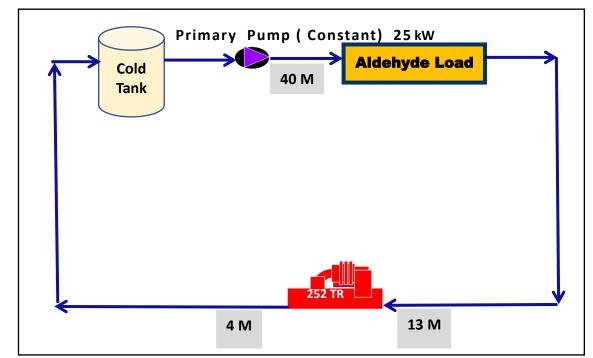
#### WATER CIRCULATION OF IN FLINE CONDENSER WATER CIRCULATION PUMP IN THE CHILLER DEDICATED FOR ALDEHYDE PLANT FOR THE SAKE OF PERFORMANCE IMPROVEMENT AND ENERGY USAGE OPTIMISATION

Cost Savings	Investment	Payback Period
₹ / y	₹	Months
25 84 000	22 00 000	10

#### Scenario 1 : At the time of Installation

7

• The scheme of operation of Chiller system of aldehyde plant at the time of installation is as below :


12 M Cold Tank 15 M 15 M 15 M Primary Pump 25 kW 14 M 22 M

#### Fig 11.4 : Chiller System: Present Scheme of Operation as per OEM

- Chilled water from the chiller flows to the cold tank from where it goes to the reactors of Aldehyde plants, delivers the chilling load and returned to the hot tank. It is then pumped from the hot tank to the chiller and the schedule of operation goes like this.
- There are two pumps in operation termed Primary Pump (25 kW rating) and Secondary Pump (55 kW rating) in the Circuit

#### Scenario 2 : Present Scheme of Operation

 As a part of energy conservation activity, the energy team of Solara had done away with the primary - Secondary pumping scheme with a single constant speed primary pump



• The scheme of operation presently practised is shown in Fig 2

#### Fig 11.5 : Chiller System: Present Scheme of Operation Practised

- Adoption of this scheme had eliminated the requirement of 25 kW pump and thus an energy saving corresponding to this had resulted which was substantial
- The study conducted on this system revealed the following ( can be termed as shortcomings )
  - (i) Higher discharge pressure from the compressor
  - (ii) Higher Evaporator approach temperature
  - (iii) Discharge superheat too was higher

- Reasons that can be attributed to the above happenings can be summed up as below
  - (i) Insufficient Refrigerant Flow
  - (ii) Improper Brine Levels
  - (iii) Higher TDS in Condenser Water
  - (iv) Improper / ineffective operation of Expansion Valve
- It is suggested that these issues are addressed effectively and eliminated to the extent possible

#### Scenario 3 : Proposed Scheme of Operation

The proposed scheme of operation is depicted below :

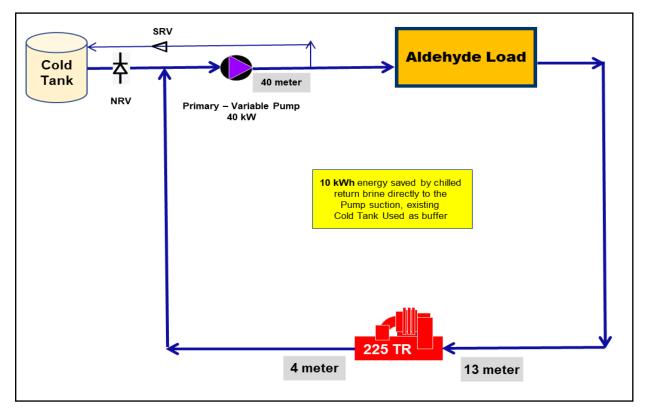



Fig 11.6 : Chiller System: Scheme of Operation Proposed

#### Highlights

(i) In this scheme of operation, the chilled water coming out of the chiller is connected suitably to the suction of the primary pump to take advantage of the outlet pressure of the chiller which is 7 m WC that otherwise goes unrecovered.

- (ii) Primary pump shall be fitted with VFD in order to modulate the chilled water flow as per the process requirement.
- (iii) Modify the condenser water circuit by way of providing a dedicated in line condenser pump for this chiller alone

#### **Benefits Expected**

- Reduction in energy consumption in chilled water pumping by way of taking advantage of outlet pressure of chilled water from the chiller
- (ii) Provision of dedicated condenser water circulation pump will enable the circulation of required water through the condenser which is not happening presently. Through the adoption of this scheme, the performance of the entire chiller is expected to improve.

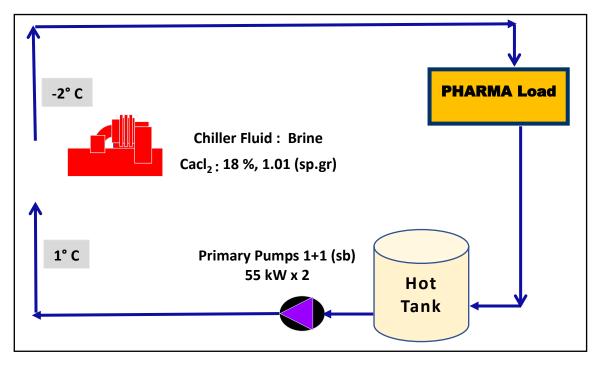
#### Recommendations

Hence, our recommendations are 2 fold :

- (i) Modify the chilled water circuit as suggested in Fig 3
- (ii) Install a dedicated in line condenser water pump and optimise the water flow :

The energy / cost saving will be substantial

Power drawl by Primary Pumps	:	Present	=	46 kW
	:	Anticipated	=	36 kW
	:	Power savings	=	10 kW
Specific power consumption	:	Present	=	1.15 kW / TR
	:	Anticipated	=	0.90 kW / TR
	:	Savings	=	0.25 kW / TR
Average Chilling Load Delivered			=	150 TR


Power Savings	=	( 0.25 kW / TR x 150 TR )	=	37.5 kW	
Overall Power reduction	=	( 10 + 37.5 )	=	47.5 kW	
Energy Savings	=	( 47.5 kW x 8000 h / y )			
	=	3 80 000 kWh / y			
Cost savings	=	( 3 80 000 kWh / y x ₹ 6.80 / kWh )			
	=	₹ 25 84 000 / y			
Investment	=	₹ 22 00 000			
Simple Payback Period	=	10 Months			

#### ECM B CHILLER SYSTEM DEDICATED TO PHARMA PLANT BY WAY OF ADOPTION OF a) VFD OPERATION TO THE PRIMARY BRINE CIRCULATION PUMP b) DEDICATED IN-LINE CONDENSER PUMP FOR THIS CHILLER

Cost Savings	Investment	Payback Period
₹ / y	₹	Months
33 18 400	22 00 000	8

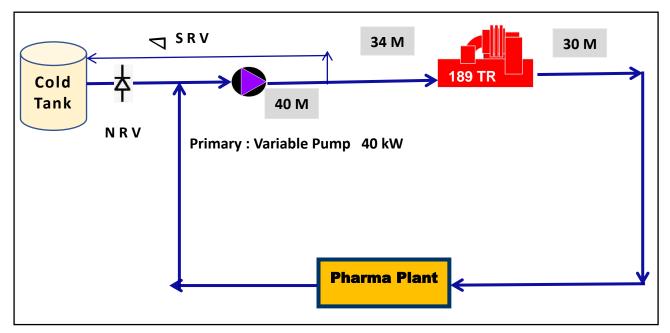
#### Scenario 1

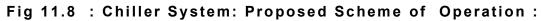
The present Scheme of operation of Chiller System of Pharma plant is depicted below :



#### Fig 11.7 : Present Scheme of Operation: Chiller System : Pharma Plant

#### Shortcomings Noticed


 Brine at pressure head of 15 m WC gets collected in the hot collection tank and from where it is sent to the chiller through a primary pump (55 kW rating) operating at a head of 40 m WC This is to infer that the pressure head available in the Brine while it leaves the pharma plant is not made use of in optimising the power drawl by the primary pump


- Primary pump operates at a constant speed whereas a variable speed through the fitment of VFD - would eventually optimise the power drawl by adopting to varying chilling load
- iii) The water flow through condenser is quite low at 80 m³ / h as against a designed rating of 180 m³ / h. This obviously increases the Specific Power Consumption of the overall chiller system . It is presently recording a SPC of 1.6 kW / TR while the designed value is 0.82 kW / TR
- iv) Chiller compressor quite old and it is operating with CaCl₂ as brine and not ethylene
   glycol. CaCl₂ is typically a corrosive fluid

#### Recommendations

The recommendation of ours goes like this

 Adopt the following circuit for chilled Brine usage in the Pharma plant and take advantage of the pressure head available

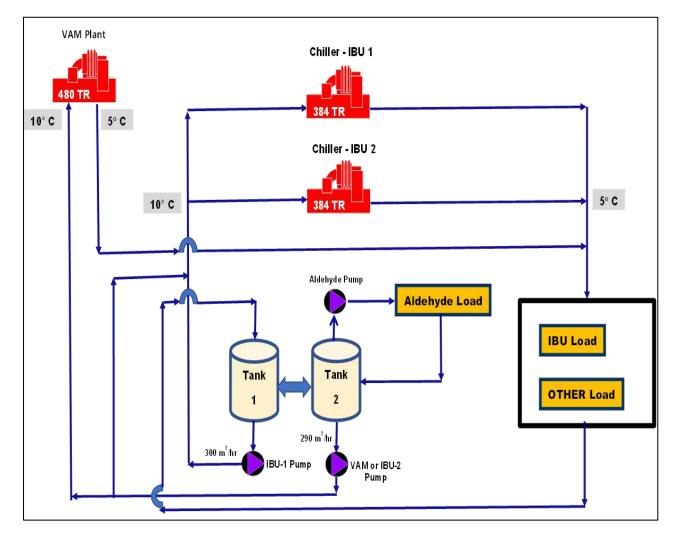




#### Chiller Pumping System

- b) Fit VFD to the primary pump and make it operate at varying speeds as per the need
- c) Install a dedicated Condenser Pump to this chiller only thereby optimising the specific energy consumption

All these 3 are bound to give considerable savings in energy and therefore the cost


Power drawl by primary pumps	:	Present	=	44 kW	1
	:	Anticipated	=	34 kW	I
	:	Power savings	=	10 kW	1
Specific power consumption	:	Present	1.6 kV	V/TR	
	:	Anticipated	=	1.0 kV	V/TR
	:	Savings	=	0.6 k ^v	W/TR
Average Chilling Load Delivered			=	150 T	R
Power Savings	=	( 0.6 kW / TR x 85 T	R)	=	51 kW
Overall Power reduction	=	( 10 + 51)		=	61 kW
Energy savings	=	( 61 kW x 8000 h / y	)		
	=	4 88 000 kWh / y			
Cost savings	=	( 4 88 000 kWh / y x	₹ 6.80 /	′kWh)	
	=	₹3318400/y	1		
Investment	=	₹ 22 00 000			
Simple payback period	=	8 Months			

	PERFORMANCE IMPROVEMENT OF CHILLER OF
	IBU PLANT THROUGH ADOPTION OF THE
ECM	BELOW LISTED MEASURES
	a) VFD ENABLED PRIMARY BRINE CIRCULATION
9	PUMP OPERATION
	b) PROVISION OF DEDICATED IN-LINE
	CONDENSER PUMP FOR THIS CHILLER

Cost Savings	Investment	Payback Period
₹ / y	₹	Months
27 20 000	22 00 000	10

#### **Present Scenario**

The present scheme of operation practiced in the Chiller Plant of IBU section is as below :





As recommended in our earlier Encon proposals the following are suggested for the betterment of Chiller operation

- (i) Replace the Primary Constant Chilled Water Circulation Pump by the Primary Variable Pump
- (ii) Install a dedicated in line condenser water pump for IBU 1 & VAM chiller
- Provide needed controls towards integration of IBU Chiller, VAM Chiller, Primary VFD Pump, in line Condenser Pump etc.,

#### **Benefits**

- (i) Reduction in power drawl by the primary pump due to the fitment of VFD
- (ii) Improvement in the SEC in terms of kW / TR through the adoption of dedicated condenser pump
- (iii) Better control on the process parameters (flow, temperature & pressure)

#### Recommendations

Follow the suggestions made in the proposed scheme to optimize the energy consumption in the chiller operation, namely, use of V F D fitted primary pump, dedicated condenser pump and appropriate process controls

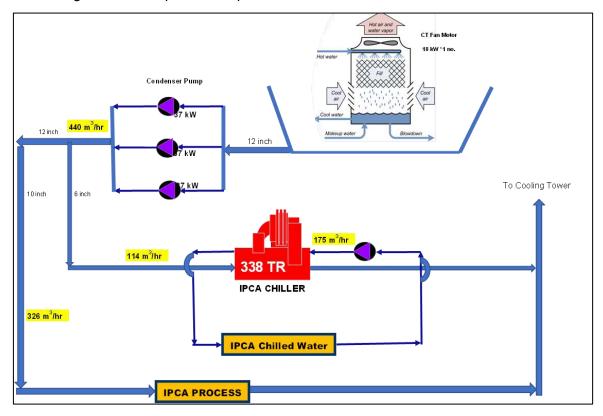
Power drawl by Primary Pump - Constant : Present		=	55 kW
	Anticipated	=	45 kW
Power sav	ings = (55-45)	=	10 kW
Specific Energy Consumption : Present		=	1.1 kW / TR
	Anticipated	=	0.85 kW / TR
	Savings	=	0.25 kW / TR
Average Chilling Load delivered		=	160 TR

Hence, Power savings	=	( 0.25 kW / TR x 160 TR )	=	40 kW
Total Power Savings	=	( 10 + 40 )	=	50 kW
Energy savings	=	( 50 kW x 8 000 h / y )		
	=	4 00 000 kWh / y		
Cost savings	=	(4 00 000 kWh / y x ₹ 6.80 / kWh)		
	=	₹ 27 20 000 / y		
Investment	=	₹ 22 00 000		
Simple Payback Period	=	10 months		

## ECM

10

## ENERGY OPTIMIZATION MEASURES PROPOSED IN IPCA CHILLER OPERATION


Cost Savings	Investment	Payback Period
₹ / y	₹	Months
25 84 000	20 00 000	10

#### Background

- The chilled water system installed in the IPCA building has a capacity of 338 TR and design to deliver chilled water to IPCA building No : 70
- A cooling tower of 800 TR has been installed to take the thermal load of the chilled water plant and also the process heat load of various reactors

#### Observations

- As per the P & ID of IPCA plant, the rating of cooling tower is only 500 T R
- Condenser water flow rate measured was only 114 m³ / h vis a vis a designed value of 300 m³ / h
- Likewise, chilled water flow is marginally less at 175 m³/ h against a designed value of 204 m³/ h
- The size of water pipelines appears inadequate
- Only a limited quantity of water flows through the condenser of the Chiller due to the restriction in pipe size
- The entering temperature of water flows through the condenser of the chiller due to restriction in pipe size
- The entering temperature of water to the cooling tower is 34 °C even with low ambient condition
- Evaporator approach temperature is high at 3 °C
- All these point to the inadequate capacity of the cooling tower that leads to inefficient operation of the chiller



The existing scheme of operation is presented below :

#### Fig 11.10: Present Scheme of Operation : IPCA Chiller System

#### Suggestions

Since the CT is of inadequate capacity, the following suggestions are made for the betterment of the chiller operation:

- (i) Replace the Chilled Water Primary Constant pump with Primary Variable pump
- Use the existing 3 (2+1 standby) condenser water pumps only for process cooling water application
- (iii) Install an energy efficient *in line vertical condenser pump* to maintain the required water flow rate in the chiller condenser
- (iv) Enable the entire operation of IPCA Chiller, Primary VFD Pumps, Condenser Pumps etc., through adequate controls

#### Benefits

The benefits that can result - through the adoption of above - are listed below :

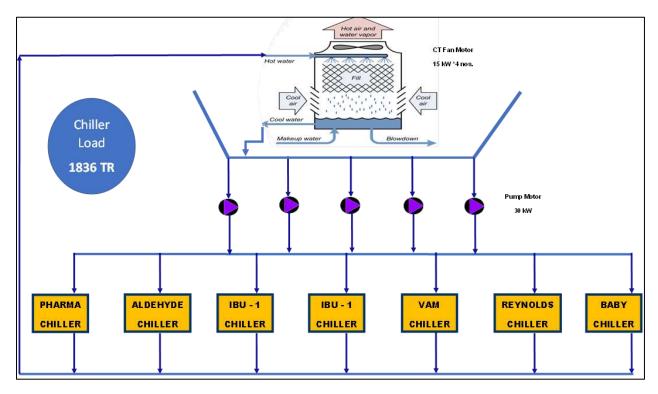
(i) Energy saving through adoption of Primary - Variable Pump

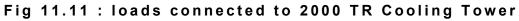
- (ii) Specific Power Consumption ( kW / TR ) reduction to a reasonable extent
- (iii) Fitment / operation of Chiller to the near designed capacity facilitating enhanced production

#### Recommendations

The recommendation is to adopt the schemes made in the above section on "*Suggestion*" The energy - cum - cost saving will be commensurate with the investment

Power drawl by Primary Pump - constan	it : Presen	nt	=	52.6 kW
	: Anticip	ated	=	42.6 kW
	Power Savings		=	(52.6 - 42.6) = 10 kW
Specific Energy Consumption :	Present		=	0.95 kW / TR
	Anticipat	ed	=	0.70 kW / TR
	Savings		=	0.25 kW / TR
Average chilling load delivered	=	150 T	R	
Hence, Power Savings	=	( 0.25	i kW	/ TR x 150 TR ) = 37.5 kW
Total Power Savings	=	( 10 +	37.	5) = 47.5 kW
Energy Savings	=	( 47.5	kW	′x 8000h/y)
	=	3 80 (	000	kWh / y
Cost savings	=	( 3 80	000	) kWh / y x ₹ 6.80 / kWh )
	=	₹25	84	4 000 / y
Investment	=	₹ 20	0 0	000
Simple Payback Period	=	10 n	nor	nths


## ECM 11


#### INSTALLATION OF NEW ENERGY EFFICIENT , LOW APPROACH COOLING TOWER REPLACING THE EXISTING 2000 TR UTILITY COOLING TOWER FOR THE SAKE OF ENERGY CONSERVATION

Cost Savings	Investment	Payback Period		
₹ / y	₹	Months		
10 05 312	20 00 000	24		

#### Observation

- There is a 2000 TR rated cooling tower that caters to the Utility section of the plant
- The loads connected to this 2000 TR chiller are shown below in Fig 11. 11





- A performance study has been conducted on this C T and presented in Chapter 9
- The Material of Construction of this CT is FRP and there are 4 compartments in this CT.
   Each compartment is fitted with an Induced Draft Fan
- Thus, there are 4 ID Fans in operation ( 3 of them are fitted with VFDs ) and consume a cumulative power of 36.1 kW

- The chilling load of this Chiller has been estimated as 440 T R and the heat rejection load as 650 T R
- Thus, the specific power drawl works out to 0.082 kW/ TR

#### Comment

- The specific power drawl of 0.082 kW / TR with reference to Fan power appears to be on the higher side
- Energy Efficient , low approach cooling towers demand a specific power drawl of only 0.04 kW / T R.

#### Recommendation

- Therefore, it is recommended to replace the existing cooling tower with an energy efficient low approach cooling tower
- This action is certain to pay for itself in short run

#### Economics

Specific Power Drawl of 4 CT Fans

	: Present	=	$0.082 \text{ kW} / \text{TR}_{\text{cooling}}$
	: Anticipated	=	0.040 kW / TR $_{\rm cooling}$
Power savings		=	0.042 kW / TR $_{\rm cooling}$
Energy savings		=	(0.042 kW / TR x 440 TR x 8000 h / y )
		=	147 800 kWh / y
Cost savings		=	(1 47 800 kWh / y x ₹ 6.8 / kWh)
		=	₹ 10 05 312 / y
Investment		=	₹ 20 00 000
Simple payback	period	=	24 months

#### PRESSURE DROP REDUCTION AT ECM COMPRESSOR AIR GENERATION LOCATION

Cost Savings	Investment	Payback Period			
₹ / y	₹	Months			
9 16 300	2 00 000				

#### **Observation: 1**

12

- Compressed air is generated at a pressure of 5.1 bar and sent to the air receiver tank through a refrigerant dryer
- It has been noticed that the pressure of the compressor air at the dryer outlet is 4 bar •
- It appears therefore, that , a  $\Delta P$  of 1.1 bar is occurring at the dryer itself
- This  $\Delta P$  of 1.1 bar across the dryer is relatively on the higher side

#### Comments

- The energy consumption in compressed air section is estimated as 5500 kWh / day
- It shall be prudent to reduce the  $\Delta P$  across the dryer to 0.5 bar and lesser
- This shall reduce the generation air pressure at the compressor outlet to 4.5 bar a • reduction of 0.5 bar which is equivalent to 10 % reduction
- This reduction in generation pressure is expected to reduce the energy consumption to a reasonable extent

#### **Recommendations**

Hence, the following activities are recommended to bring down the energy consumption in the compressed air generation

- Replacement of pre air filters provided in the air dryer (both at inlet & outlet)
- Service the air dryer with OEM

#### Economics

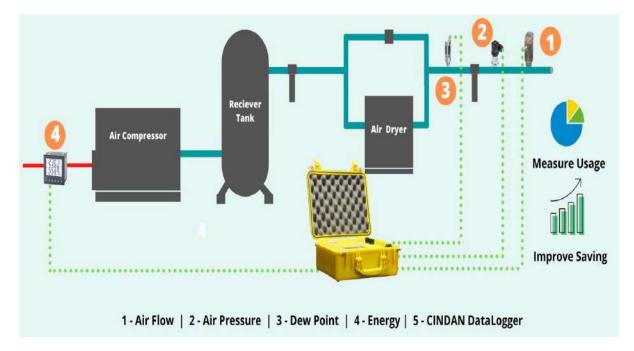
Pressure at the air compressor outlet :

	present	= 5.1 bar
	suggested	= 4.5 bar
Power reduction = [	6.1 ^{0.26} - 1] / [5.5 ^{0.26} -	1] = 7%
Energy consumption	present	= 5 500 kWh / d
	anticipated @ 93%	= 5115 kWh / d
Energy savings		= 385 kWh / d
		= ( 385 kWh / d x 350 d / y)
		= 1 34 750 kWh / y
Cost savings		= (1 34 750 kWh / y x ₹ 6.80 / kWh )
		= ₹916300/y
Investment		= ₹ 2 00 000
Simple payback period		= < 3 months

## ECM THE USE OF <u>IoT</u> MONITORING SYSTEM IN THE COMPRESSED AIR SYSTEM CIRCUIT

Cost Savings	Investment	Payback Period			
₹ / y	₹	Months			
5 23 600	5 00 000	< 12			

#### Observations


- The plant has installed 3 screw air compressors to meet the process air requirements that include instrumentation air requirement also
- In addition, part of the compressed air is used for N₂ generation for in house process usage
- On an average, 5500 kWh of energy is consumed daily by air compressor systems alone
- The compressed air is used at 7 locations in the plant (details are already presented in Section 8) requiring varying pressures
- It was recorded that pressure gauges have been provided at a couple of locations and few gauges were found to be not working

#### Comment

- It was noticed that the compressed air is used at 7 different locations at different pressures
- Surprisingly, the air flow rates (either cumulative or individual ) are not being monitored
- As such, the instrumentation in the compressed air system appears inadequate
- Further, due to the non stop ( continuous ) operation of the process / air compressors, the performance related parameters of the air compressor ( like FAD, Specific Energy Consumption, Pressure Drop in the air distribution system etc., ) are not being recorded / monitored

#### Recommendation

- Our recommendation therefore is to enable IoT monitoring system in the compressed air circuit not only to monitor the compressed air usage pattern but also to optimise its usage thereby effecting energy conservation.
- The scheme proposed is depicted below:



#### Economics

Energy consumption of air compressor circuit	= 5500 kWh / d
Energy saving anticipated @ 4%	= (5500 kWh / d x 4 %)
	= 220 kWh / d
	= [220 kWh / d x 350 d / y]
	= 77 000 kWh / y
Cost savings	= (77 000 kWh / y x ₹ 6.80 / kWh)
	= ₹5 23 600 / y
Investment	= ₹5 00 000
Simple payback period	< 12 months

## ECM

14

## REPLACEMENT OF EXISTING CONVENTIONAL LUMINAIRES WITH APPROPRIATE ENERGY EFFICIENT <u>LED</u> LAMPS FOR THE SAKE OF ENERGY CONSERVATION

Cost Savings	Investment	Payback Period
₹ / y	₹	Months
2 48 200	2 50 000	12

#### Observation

- 215 Nos of High Pressure Sodium Vapour (HPSV) Lamps of 125 W rating have been installed in various locations of the plant
- The location wise installation details of HPSV Lamps are as below :

Table	No	: HPSV	Lamps	:	Location	wise	Installation
-------	----	--------	-------	---	----------	------	--------------

No	Location	Type of Fitting
1	I B U Plant	14
2	Pharma Plant	80
3	Aldehyde Plant	18
4	Pilot Plant	8
5	IBU Derivative Plant	19
6	D C Packing	0
7	2 D Block	17
8	I B U Packing - I	4
9	I B U Packing - II	9
10	Raw Material Store	2
11	I P C A Plant	44

- On an average, energy consumption due to these HPSV lamps is expected to be around 450 kWh / d, thus indicating an operating load of about 30 kW
- The plant has already initiated the programme of replacing conventional Fluorescent Tube Lights by LED for energy conservation's sake and literally there are only a handful of tube lights in use in the plant at present

#### Comments

- Conventional luminaires consume more power for a given lumens output
- Also, the lifetime of conventional luminaires is limited
- The present trend is to replace these conventional luminaires with energy efficient & longer life LED lamps
- Further, the HPSV lamps produce monochromatic colour that is unsuitable for indoor applications

#### Recommendation

Hence, the recommendation is to replace the conventional HPSV lamps by LEDs of appropriate wattages effecting no sacrifice on the lux level requirement at the user locations

#### Economics

Energy consumption due to HPSV lamps Present = 450 kWh / d									
Energy consumption due to	350 kwh / d								
Energy Savings	=	( 450 –	350)	=	100 kWh / d				
			=	(100 kWh x 36	5 d / y)				
			=	36 500 kWh / y	,				
Cost Savings			=	( 36 500 kWh /	y x ₹6.8/kWh)				
			=	₹ 2 48 200	/у				
Investment			=	₹ 2 50 000					
Simple Payback Period			=	12 months					



# PERFORMANCE

## CENTRIC Proposals

## PCP 1

## INSTALLATION OF 2 WAY - VALVES IN PLACE OF EXISTING 3 WAY VALVES IN IDENTIFIED AIR HANDLING UNITS

#### INTRODUCTION

- The chilling ambience inside the plant is obtained by the circulation of chilled water through Air Handling Units (AHUs) located / installed appropriately inside the plant
- The chilled water to these AHUs is delivered by the IBU, VAM, & IPCA Chillers as per the requirements
- Chilled water from IPCA Chiller is circulated through 13 AHUs.
- Likewise, chilled water from IBU / VAM chiller is passed through 14 AHUs
- Various energy related measurements have been recorded with reference to these AHUs and are listed below:

#### DATA COLLECTION

#### AHU Serviced by IPCA Chiller : Data Captured

- There are 13 AHUs that were supplied with Chilled Water produced from IPCA Chiller
- The details are as below in Table 12.1

 Table 12.1 : AHUs of IPCA Chiller : Data Captured

No	Location	AHU ID	Motor kW	Air Flow CFM	Chilled Water inlet	Chilled Water outlet	Chilled Water delta T	Valve Type	Pr Inlet	Pr Outlet	ΔΠ
						(° <b>C</b>	(°C)			ks	С
1	IBU packing / P 15 AHU0012	AHU 1	15	7 000	9.1	16.1	7	NO	2.4	1.5	0.9
2	IBU packing / P 15 AHU0013	AHU 2	10	4 700	9.7	13.8	4.1	NO	2.8	1.8	1
3	IBU packing / P 15 AHU0009	AHU 3	5.5	2 000	9.7	13.5	3.8	NO	2.8	1.8	1
4	IBU packing / P 15 AHU0007	AHU 4	15	8 500	9.1	15.1	6	NO	2.3	1.6	0.7
5	IBU packing / P 15 AHU0014	AHU 5	15	7 000	9.1	15.2	6.1	NO	2.3	1.6	0.7

No	Location	AHU ID	Motor kW	Air Flow CFM	Chilled Water inlet	Chilled Water outlet	Chilled Water delta T	Valve Type	Pr Inlet	Pr Outlet	ΔП
						(°C	;)		3 - W	ks	C
6	IBU packing / P 15 AHU0010	AHU 6	15	8 000	9.7	13	3.3	NO	2.4	1.8	0.6
7	IBU packing / P 15 AHU0008	AHU 7	15	9 100	9.1	16.1	7	NO	2.3	1.9	0.4
8	IBU packing / 2 / M / AHU2043	AHU 2	7.5	5 000	8	10.8	2.8	Yes	3	2.3	0.7
9	IBU packing / 2 / M / AHU2042	AHU 1	10	6 700	8	10.5	2.5	Yes	3	2.3	0.7
10	IBU packing / 2 / M / AHU2041	AHU 3	15	9 500	8	10.3	2.3	Yes	3	2.3	0.7
11	Pharma / M / AHU 2050	AHU 1	5	1 500	10	23.5	13.5	No	2.2	2.2	0
12	Pharma / M / AHU 2069	AHU 2	20	12 000	5	11	6	Yes	3.9	2.7	1.2
13	Pharma / M / AHU 2070	AHU 3	10	6 000	6.2	12.9	6.7	Yes	2.2	1.8	0.4

#### AHU Serviced by IBM : VAM Chiller : Data Captured

- There are 14 AHUs that were supplied with chilled water produced from IBU / VAM Chiller
- The details are as below in Table 12.2

#### Table 12.2 : AHU OF IBU / VAM : Data captured

No	Location	AHU ID	Motor kW	Air Flow CFM	Chilled Water Inlet	Chilled Water Outlet	Chilled Water Delta T	Valve Type	Pr Inlet	Pr Outlet	ΔP
						(°C)		3 - W		ksc	
1	2 D Block / M / AHU 2064	AHU 8	20	8 000	6.6	9.1	2.5	Yes	2.2	1.8	0.4
2	2 D Block / M / AHU 2065	AHU 9	8.5	2 500	5	10	5	Yes	2.2	1.2	1
3	2D Block / M / AHU 2068	AHU 1	5	1 500	5.5	8.4	2.9	Yes	No Provision		on
4	D C Packing	AHU 1	15	15 000	5.9	10	4.1	Yes	2.3	1.6	0.7
5	Pilot Plant / M / AHU 2046	AHU 1	7.5	2 500	8	11	3	Yes	2.2	1.8	0.4
6	Pilot Plant / M / AHU 2048	AHU 2	7.5	4 600	8	15.8	7.8	Yes	2.2	1.8	0.4
7	Pilot Plant / M / AHU 2047	AHU 3	7.5	3 500	8	9	1	Yes	2.2	1.8	0.4

No	Location	AHU ID	Motor kW	Air Flow CFM	Chilled Water Inlet	Chilled Water Outlet	Chilled Water Delta T	Valve Type	Pr Inlet	Pr Outlet	ΔP
						(°C)		3 - W		ksc	
8	2 D Block / M / AHU 2024	AHU 2	10	1 000	7.5	14.1	6.6	No	1.5	1.3	0.2
9	2 D Block / M / AHU 2029	AHU 3	10	1 000	7.5	12.5	5	No	1.8	1.5	0.3
10	2 D Block / M / AHU 2030	AHU 4	7.5	5 000	7.5	13.7	6.2	No	1.8	1.5	0.3
11	2 D Block / M / AHU 2031	AHU 5	3	2 500	7.5	14.9	7.4	No	1.8	1.2	0.6
12	2 D Block / M / AHU 2032	AHU 6	5	3 500	7.5	10.9	3.4	No	1.8	1.5	0.3
13	2 D Block / M / AHU 2033	AHU 7	3	1 500	7.5	15.6	8.1	No	1.2	1	0.2
14	2D BLOCK	AHU 10	5	1 500	8	13.5	5.5	No	3	2.3	0.7

#### Observations

- Chilled water flow is controlled presently by 3 way valve in 5 out of 13 AHUs of IPCA Chiller . Similarly, 7 out of 14 AHUs ( IBU / VAM Chiller ) have 3 way valve fitted with
- The rest 15 AHUs are not provided with valves at all
- Chilled water outlet temperatures were found to be invariably higher in all AHUs.
- It has been recommended earlier in our Encon proposal to fit VFD to the Primary Pumps of all Chillers which are currently operating at constant speed
- The fitment of VFD is certain to bring in energy savings
- As a fall out of this, the AHUs can be fitted with 2 way valves which are not only an appropriate choice under the altered circumstances and also bring down the  $\Delta P$  across them .
- This reduction in △P is bound to reduce the energy consumption in chilled water flow, thereby save on energy
- Thus, the installation of 2 way valve replacing 3 way valve is bound to save energy to a reasonable extent. Hence this suggestion.

## РСР 2

## INSTALLATION OF WATER COOLED VRF CONDENSER UNIT FOR MICROBIOLOGY LAB DX UNIT

#### Observation

- The microbiology lab located above the canteen is cooled by 3 AHUs with DX coils with a refrigeration rating of 30 TR. Each of the condenser is air cooled.
- Additionally, many split A / Cs of varying capacities are installed in the IT and other Departments
- All the Condenser Units are located besides the AHU condenser of microbiology lab

#### Comment

- CoP of water cooling system is way ahead of that of an air cooled system.
- Therefore, it would be prudent to replace the existing multiple condenser coil units with a single water cooled 30 T R condenser VRF unit
- With the added advantage of VRF, the CoP of the system can go as high as 6 to 7
- The additions will be *a cooling tower with condenser unit and a pump*
- This arrangement is being suggested mainly to conserve electricity

#### Way Forward

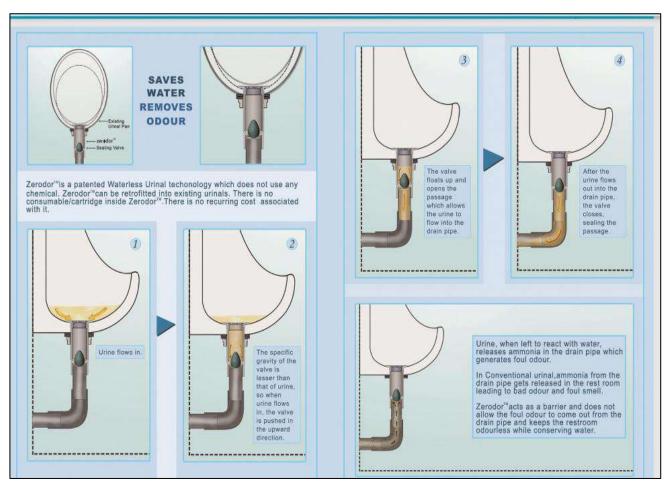
Use of dedicated water cooled VRF system should be considered for series of split A/C and DX unit.

## PCP

## 3

## REPLACEMENT OF EXISTING MEN'S URINAL WITH WATERLESS URINAL

#### Observation


- This site has more than 100 men manning each shift
- Urinals consume 1.5 litres of water per usage as per the quick observation made by us
- Thus, the water consumption in Urinals is estimated to be 1.0 kL / day

#### Comment

- The water usage in the men's urinal can be reduced with the retrofit of "Waterless urinal"
- Waterless Urinal requires 95 % less water compared to the traditional men's urinal
- There are 2 types of waterless urinal in vogue : Chemical Type and Mechanical Type
- Mechanical type offers advantage that it doesn't require any consumable. Due to the superior & special design, the odour is non existent

#### Working of a Mechanical Waterless Urinal

- Waterless Urinal of mechanical type works on very simple principle of buoyancy effect
- The Urinal will be fixed with a mechanical float made of plastic material.
- Once urination is done, due to the difference in then density of urine and float, float comes up and urine goes to the pipe.
- Once urination is completed, the float goes to the normal location, closing the pipe.
   This prevents the odour from the pipe
- Since all the urinal is designed in such a way that minimal urine remains in it after usage. Any remaining urine in the ceramic will less than 10 mL and all the ammonia will be evaporated.
- To avoid the urine staining it is recommended to clean the urinal twice a day for which only water is required and hence the 95 % efficacy



The working mechanism is explained in the Fig 12.1

Fig 12.1 : Working of a Waterless Urinal

#### Recommendation

- Hence, our recommendation is to replace the existing men's urinal with "Waterless Urinal"
- To avoid the urine staining, it is recommended to clean the urinal twice a day with water
- Water savings can be as high as 1.0 kL / day

This proposal is more from performance perspective

## 13 CONSOLIDATION AND CONCLUSION

#### 13.1 SUMMARY OF IDENTIFIED ENCON PROPOSALS

- The Detailed Energy Assessment ( D E A ) study carried out on various utilities of the plant, that include Transformers, Air Compressors, Chillers, Cooling Towers, Boiler etc., had revealed a reasonable scope for optimised usage of energy in these.
- Based on our study, **14** energy conservation proposals have been identified, the details of which are presented below

#### Table 13.1 : Energy Conservation Proposals Identified : A Summary

No	Proposal Description	Energy Savings	Cost Savings	Investment	Payback Period
		kWh / y	₹/y	₹	months
1	Strategic Co - Firing of sized wood (Casuarina) with conventional Agro-Briquettes in the process boiler as a cost conservation measure of	-	58 00 000	Nil	Immediate
2	Recovery of Condensate from the Steam Traps that are open to ambient and have no collection mechanism	-	3 16 386	8 00 000	30
3	Reducing the Thermal energy loss by redoing the insulation work afresh in identified locations that have either damaged Insulation / Peeled Off insulation exposing bare surface	-	25 92 800	20 00 000	9
4	Improvement of power factor by Rectifying the non- operational / failed Capacitor Banks in order to save on the energy cost payable to PED	3 15 117	21 42 800	15 00 000	9
5	Construction of additional Powerhouse near the Boiler Plant with a view to i)Contain the excessive load experienced by the present Powerhouse ii) Reduce the distribution losses occurring in power transmission to ZLD plant	7 17 500	48 79 000	1 50 00 000	36
6	Reducing the cooling energy loss by redoing the insulation work afresh in identified locations that have either Damaged Insulation /Peeled Off insulation exposing bare surface	44 160	3 00 288	1 50 000	6
7	i) Fitment of Variable Frequency Drive to Primary Pumps & ii) Installation of in - line Condenser Water	3 80 000	25 84 000	22 00 000	10

No	Proposal Description	Energy Savings	Cost Savings	Investment	Payback Period
			₹/y	₹	months
	Circulation Pump in the Chiller dedicated for Aldehyde Plant for the sake of performance improvement and Energy Usage Optimization				
8	Energy optimization in the operation of Chiller System dedicated to Pharma Plant by way of adoption of (i) VFD operation to the primary brine circulation pump (ii) dedicated in - line condenser pump for this chiller	4 88 000	33 18 400	22 00 000	8
9	Performance improvement of chiller of IBU plant through adoption of the below - listed measures: (i) VFD operation to the primary brine circulation pump & (ii) dedicated in - line condenser pump for this chiller	4 00 000	27 20 000	22 00 000	10
10	Energy Optimization measures proposed in I P C A Chiller operation	3 80 000	25 84 000	20 00 000	10
11	Installation of new Energy Efficient, Low Approach Cooling Tower replacing the existing 2000 TR Utility Cooling Tower for the sake of Energy Conservation	1 47 800	10 05 312	2 00 000	24
12	Pressure drop reduction in Compressor Air generation location	1 34 750	9 16 300	2 00 000	< 3
13	Energy optimization through the use of IoT monitoring system in the Compressed Air system circuit	77 000	5 23 600	5 00 000	< 12
14	Replacement of existing conventional luminaires with appropriate energy efficient LED lamps for the sake of Energy Conservation	36 500	248200	2 50 000	12

The overall anticipated saving is computed as 3120 MWh / y in energy and ₹ 3.0 Crores / y in cost with a onetime investment of ₹ 3.1 Crores which shall get paid back in about 12 months. The energy savings expected is 13 % of overall energy consumption of the plant

#### **13.2 AUDIT OBSERVATIONS**

• The table drawn below sums - up our observations in respect of Utilities that were at work at the time of detailed energy audit study

No	Utilities	Observations & remarks
1	Transformer	<ul> <li>The plant has one 5000 kVA transformer in use which is loaded to around 65%</li> <li>All day efficiency has been computed as 99.2 % which is quite acceptable</li> <li>The energy loss estimated was only 22 kW</li> <li>Thus, the operation of the present transformer appears quite alright</li> </ul>
2	Power Control Centre ( P C C )	<ul> <li>The load requirement of the plant is distributed through 3 PCCs that are loaded uniformly to a major extent</li> <li>Harmonics levels in PCC 2 were found to be much higher than the stipulated norms mainly due to the operation of many VFD fitted motors in this PCC</li> <li>As a whole, nothing adverse has been noticed in the operation of PCCs</li> </ul>
3	Capacitor Banks	<ul> <li>The plant has installed 2800 kVAr power factor panels of which only 2300 kVAr were in operation at the time of study</li> <li>An effectiveness test conducted on capacitor banks has shown an effectiveness of only 48 % (1345 kVAr) indicating the urgency to set right the capacitor banks</li> <li>This is so, since the plant is charged for kVAh consumed and not kWh</li> <li>Currently the PF hovers around 0.98 only and hence this suggestion</li> </ul>
4	Utility Motors	<ul> <li>Load studies ( both kW &amp; Ampere ) have been conducted on 32 identified motors that are fitted to Pumps / Fans of Chillers / Boilers / Cooling Towers</li> <li>The loading had been found to be optimal in majority of the motors barring a few</li> <li>One of the notable features was the fitment of VFD to appropriate motors for the sake of energy efficiency and that is lauded</li> </ul>
5	Air Compressors	<ul> <li>There are three air compressors in operation to meet the process demand</li> <li>These air compressors are not adequately instrumented making the evaluation of the operating performance a difficult task</li> <li>Energy consumption due to Air Compressors alone is close to 5500 kWh / d which accounts for 8 % of the total energy consumption of the plant</li> <li>It was also noticed that the performance of one of the Driers is not up to the mark</li> <li>More attention is needed to be paid in respect of the operation of the air compressors as these are energy guzzlers</li> </ul>

Table 13.2 : Audit Observations & Remarks

No	Utilities	Observations & remarks
6	Cooling Towers	<ul> <li>There are 5 cooling towers of cumulative load of 6300 TR installed in the plant</li> <li>It was recorded that the effectiveness of 2 out of 5 CTs are quite less and that of one cooling tower is only moderate.</li> <li>It is felt that the performance levels of all cooling towers will have to be enhanced</li> <li>A dedicated effort in this direction is suggested</li> </ul>
7	Pumps of Chiller + Process CTs	<ul> <li>In all, 19 pumps have been studied for their performance</li> <li>Pumps of Utility section 2000 TR perform reasonably well while the pumps handling Brine, Chilled Water, Process Water in ZLD,1500 TR&amp; 500 TR were all performing below par</li> <li>Hence, it is recommended to take up a dedicated study on these pumps to upgrade the efficiency, wherever possible , by way of pump swapping, pump replacement ,operating parameters optimisation of the pumps nearer to the designed parameters</li> </ul>
8	Chiller Systems	<ul> <li>There are 4 Chillers in the plant operating on Vapour Compression Principle and one on Vapour Absorption Principle</li> <li>A performance study conducted had revealed that 3 (Aldehyde, IBU &amp; IPCA) Chillers delivered TR at the rate of less than 50 % of that designed.</li> <li>Likewise, Specific Energy Consumption evaluated in terms of "kW/ TR " for all the 3 Chillers were found to be higher.</li> <li>The performance of VAM Chiller is below par</li> <li>A detailed &amp; focussed study may be taken – up on all the Chillers in order to weed out the inefficiencies encountered in the operation</li> <li>In short, it is time that the performance of Chillers is enhanced</li> </ul>
9	Boilers	<ul> <li>The plant has installed 2 agro briquette fired boilers of <b>16 tph</b> capacity each</li> <li>Forbes Vyncke boiler is majorly used, and it offers an overall thermal efficiency of around 75%. The major loss is due to H₂ which cannot be avoided since the fuel fired is an agro residue</li> <li>The steam fuel ratio recorded is 5.17 which is quite acceptable</li> </ul>
10	Steam Traps	<ul> <li>There were 41 steam traps installed in the steam header and sub header lines that were diagnosed</li> <li>Of these, 16 were not in operation and 8 were faulty traps. These will have to be set right</li> <li>Further, it was noticed that the condensate from the traps is not collected which is a waste of mass &amp; energy.</li> <li>Hence, efforts shall be made to collect the unrecovered condensate and use it back in the boiler</li> </ul>

No	Utilities	Observations & remarks
11	Condensate Recovery	<ul> <li>Overall condensate recovery was 2/3rd of the steam generation</li> <li>The condensate that goes unrecovered is as much as <b>110 tons / day</b> and hence action must be initiated to collect the unrecovered condensate to the extent possible</li> <li>This can result in reasonable savings in cost</li> </ul>
12	Insulation	<ul> <li>A thermographic survey was undertaken on hot surfaces as well as cold surfaces of the plant</li> <li>In a couple of locations, it was found that the insulations were damaged / peeled off exposing bare surfaces</li> <li>An estimate has been made on the "Energy Lost" due to faulty insulation and presented in Chapter 11</li> <li>Therefore, it is suggested that the insulation shall be redone at the locations identified in order to minimize the energy / cost loss</li> </ul>
13	Illumination	<ul> <li>The plant has replaced majority of the conventional luminaires with LED lamps</li> <li>Energy consumption due to illumination accounts for less than 3% of total energy consumption of the plant which is reasonable / acceptable enough.</li> <li>A solitary suggestion made in the report is to replace the 215 Nos of 125 W HPSV by appropriate equivalent LED lamps to further prune down the energy consumption due to illumination</li> </ul>

#### 13.3 SUM - UP

- As a sum up exercise , our conclusions are stated below :
  - a) The following utilities perform to satisfactory levels :
    - Transformers
    - Boilers
    - PCCs
    - Illumination
    - Steam Traps
    - Motor in respect of their Loading

- b) The following utilities require "re visit" in order to make them perform better
   from energy consumption perspective :
  - Air Compressors
  - Cooling Towers
  - Pumps
  - Chillers
  - Condensate Recovery System
- Further, attention shall be focused specifically on the Load Sharing / Distribution through the Powerhouse as it appears to have been overloaded and has poor ventilation for heat dissipation
- Similarly, the compressed air distribution scheme shall be taken up for scrutiny as it appears that the operation is inefficient at present compounded by poor instrumentation
- Recommendations have been made to address these identified major issues and that will likely call for investment
- The energy conservation proposals made in this report are techno commercially viable
   & attractive ones and hence, shall be taken up for implementation to weed out the technical inadequacies pointed out

As such, the performance of the utilities can be graded in the range of 6 - 7 in the scale of 10 and the aim shall be to upgrade this further.

## 14 THERMOGRAPHY STUDY OUTCOME

#### 14.1 INTRODUCTION

- Thermography is an extremely influential method of practically monitoring, sensing, and recording the temperature – a reflection of heat. It further assists in effectively troubleshooting any electrical, mechanical, electronics and structural system. Infrared Thermal Imaging offers accurate data related to the problems that remain undetected using standard visual inspection and diagnostic techniques. It offers solutions to the problems that cannot be seen with the naked eye being clearly visible with thermal imaging. An assessment of electrical safety has been done using thermal imaging camera.
- The thermal images captured on electrical systems include Panel Boards, Cables, Bus Bars etc. In all, thermo mapping was carried out at 127 locations. It is suggested that the electrical system issues are sorted out at the earliest as they impact the safety. The thermal images captured are expected to bring in safety in electrical systems, savings in terms of energy ( though not significant ) as well as reduction in maintenance cost to the management.
- The International Electrical Testing Association provides the guidelines [ shown in the following Table ] that aid in determining the degree of severity of an electrical problem.

Problem Classification	Temperature Range	Comments
Mild	30 °C - 40 °C	Repair during regular maintenance schedule ; Limited probability of physical damage
Moderate	41 °C - 60 °C	Repair soon (2 - 4 weeks). Watch load and change accordingly. Inspect for physical damage.
Serious	61 °C - 70 °C	Repair within 1 or 2 days. Replace component and inspect the surrounding components for probable damage.
Critical	Above 70 °C	Repair immediately. Replace component, inspect surrounding components for damage

#### 14.2 OUTCOME

The outcome is presented in this section as per the categorisation made

No	Location	Thermal image	Normal image	Temp° C	Time
1	22 kV Two Pole Switch Yard	10.9 39.2 40.8 12 5.5 °C		40.8	12:44 PM
2	22 kV Switch Yard	209 30.6 13.2 38.7 38.7 44.0 -36 -30 -24 -18 -12 -4.4 °C		38.7	12:44:49 PM
3	Capacitor Panel 4, 15 kVAR Capacitor	39.6 39.0 39.0 38.9 38.9 38.9		39.6	5:01:45 PM

44.4 43 42

-41 -40

#### 14.2.1 Category : Mild : No of Locations : 13 : Temp: 30 - 40 °C

UACP 2012

4

40.1

5:52:13 PM

No	Location	Thermal image	Normal image	Temp° C	Time
5	UACP 2016 I / C from PC 02 / 113	33,4 45,5 44 42 40 -38 -36 -34 -36 -34 -32 -30 -28 -25,8 -C		33.9	6:03:18 PM
6	Lighting panel IBU plant MLDB 01 / F10	40.2 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1		40.2	4:40:45 PM
7	Lighting Panel Powerhouse D B - 01	38.3     38.7       38.3     38.3		38.7	4:40:39 PM
8	Air Compressor 2010 I / C	46.2 44 42 40 -38 -36 -34 -32 -29.6 *C		35.2	6:00:45 PM
9	Boiler House Block – 25 Air Compressor UACP 2012	33.8 33.6 33.7 33.7 33.7 33.7 33.7 33.7 33.7		33.8	6:02:09 PM

No	Location	Thermal image	Normal image	Temp° C	Time
10	Chiller Unit UCCH 2018	9.1 9.1 9.1 9.1 9.1 -49 -42 -35 -28 -21 -14 -7 -1.1 -7 -1.1 -7		36.1	8:00:35 PM
11	Chiller Unit UCCH 2018			32.2	8:02:18 PM
12	Chiller Unit UCCH 2019	22.7 22.7 21.6 21.6 8.6 8.6		33.3	8:04:02 PM
13	Chiller Unit UCCH 2022	243 243 46 278 278		37.3	8:02:11 PM

No	Location	Thermal image	Normal image	Temp° C	Time
1	22 kV switch Yard two pole switch	-49.2 -45 -40 -35 -30 -25 -20 -15 -11.5 °C		43.0	12:45:02 PM
2	22 kV switch Yard	-50.9 -42 -36 -30 -24 -18 -11.3 *C		43.3	12:45:26 PM
3	22 kV Switch Yard C T & P T	40.4 46.5 46.4 46.5 46.5 1.9 1.9 1.2 7.3 °C		46.5	12:46:29 PM
4	22 kV Switch Yard C T	-51.5 -42 -36 -30 -24 -18 -9,4 -9,4		45.9	12:47:16 PM
5	22 kV switch Yard H T Cable Terminal Side	31.1 40.4 40.4 40.4 42.0 50.3 -42 -35 -28 -21 -14 -7 -0.5 °C		42.0	12:47:53 PM

14. 2.2 : Category : Moderate : No of Locations : 73 : Temp: 40 - 60 °C

No	Location	Thermal image	Normal image	Temp° C	Time
6	22 kV HT Yard P T & C T	-49.9 -42 -36 -30 -24 -18 -12 -4.9 °C		42.6	12:47:59 PM
7	5 MVA Transformer Main View	59.9 55.0 53.2 52.6 52.6 52.6 52.6 53.2 52.6 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 53.2 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52		59.9	12:49:24 PM
8	5 MVA Transformer H T Cable Side	44.2 46.1 46.1 46.1 46.1 46.1 46.1 46.1 46.1		55.8	12:50:29 PM
9	5 MVA Transformer Side view	50,5 50,5 50,5 50,5 50,5 50,5 50,5 50,5		57.6	12:50:36 PM
10	1 IPCA & Recovery O / G	42.1 43.0 43.0 42.6 42.1 43.0 43.0 42.6 -44 -42 -40 -38 -36.4 °C		43.0	1:11:03 PM

No	Location	Thermal image	Normal image	Temp° C	Time
11	1 Air Compressor west O / G	44.8 44.9 44.0 43.4 -51 -48 -45 -42 -39 -37.6 °C		44.9	1:13:05 PM
12	1 IBU private PC 01 / 08 O / G	45.9 48 49 0 47.4 45.9 48 49 0 47.4 -50 -49 -48 -47 -46 -45 -44.3 °C		49.0	1:18:07 PM
13	1 Pharma South & Pillar Main	44.1 44.5 46.1 45.1 44.1 44.5 46.1 45.1 44.3 -42 -40.3 °C		46.1	1:19:09 PM
14	1 Fire hydrant O / G	43.6 43.0 42.8 42.8 43.6 43.0 42.8 42.8 -52 -50 -48 -46 -44 -42 -40 -38.2 °C		43.6	1:19:25 PM
15	1 Pilot Plant & Canteen PC (01 / 03)	45.5 51.3 51.3 -50 -49 -48 -47 -46 -47 -46 -45 -44.3 °C		51.0	1:20:25 PM

No	Location	Thermal image	Normal image	Temp° C	Time
16	1 IBU & Aldehyde PC 01 / 14	44.2 45.0 44.8 44.6 44.2 45.0 44.8 44.6 -44 -42 -40 -38.4 °C		45.0	1:21:10 PM
17	PCC 2 IBU Packing PC 02 / 02	44.7 45.6 44.3 44.8 44.3 44.8 44.7 -46 -45 -44 -45 -44 -43 -42.1 °C		46.6	1:23:02 PM
18	PCC2 Chiller Plant North	42.6 42.2 42.4 42.2 42.4 42.5 -50 -48 -48 -46 -44 -44 -42 -39.3 °C		42.6	1:24:41 PM
19	PCC - 2 Boiler PC 02 / 06	41.9 45.3 42.0 42.2 -37.9 °C		45.3	1:26:09 PM
20	PCC -2 Aldehyde PC 02 / 07	42.8 51.0 46 2 44.7 46 - 45 - 44 43 - 42 41.1 °C		51.0	1:26:44 PM

No	Location	Thermal image	Normal image	Temp° C	Time
21	PCC 2 Cooling Tower East PC 02 / 08	42.8 489 472 24 41.4 °C		50.4	1:27:09 PM
22	PCC - 2 Pharma North O / G	40.9 41.2 41.5 41.0 -37.6 °C		41.5	1:27:37 PM
23	PCC - 2 IBU Packing P C 02 / 11	42.0 41.6 41.5 -39 -34.7 °C		41.6	1:28:01 PM
24	2 NEW 120 HP Air Compressor PC 02 / 13	45.7 46.2 46.3 52.0 -52 -50 -48 -46 -44 -41.1 °C		52.0	1:30:01 PM
25	02 ETP PC 02 / 15 O / G	42.8 46 3 49 0 49 0 48 -46 -44 -41.7 °C		49.7	1:31:32 PM

No	Location	Thermal image	Normal image	Temp° C	Time
26	2 new RO ( PC 02 / 16 )	41.8 41.9 41.9 41.9 41.9 41.9 41.9 40 39.1 C		41.9	1:31:52 PM
27	MV Panel Room Capacitor Panel - 1	54.7 48.0 43.8 43.8 -59.9 -57 -54 -51 -48 -45 -41.9 °C		54.7	3:59:03 PM
28	Capacitor Panel 1 Capacitor - 4 O / G	48.0 48.0 41.3 41.3 40.0 7C		50.4	3:59:12 PM
29	Capacitor Panel	43.9 43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.5		43.9	4:01:03 PM
30	Capacitor Panel	44,8 44,5 44,6 44,6 44,6 44,6 44,6 44,6 44,6		53.1	4:01:12 PM

No	Location	Thermal image	Normal image	Temp° C	Time
31	Capacitor Panel	43.9 43.9 50.4 49 49 49 49 49 49 49 49 49 4		50.4	4:01:22 PM
32	PCC - 03 Pillar UPS O / G	-52.6 -50 -48 -46 -44 -44 -42 -40 -38.9 -2		44.9	4:05:14 PM
33	03 Cinacalcet Main O / G	43.1 43.6 43.7 -51.1 -50 -49 -48 -44 -45 -44 -45 -44 -43 -42 -41 -40 -38.4 -C		43.7	4:05:30 PM
34	3 Main Incomer MV 01 / 04	-56.2 -55 -54 -53 -52 -51 -50 -49 -43 -47 -45.5 -C		53.2	4:08:03 PM
35	3 Main Incomer MV 01 / 04	48.9 50.3 47.8 -58.5 -56 -54 -52 -50 -48 -48 -46 -44.9 *C		50.3	4:08:13 PM

No	Location	Thermal image	Normal image	Temp° C	Time
36	3 PC 03 / 08 New 120 HP Air Compressor South	45.2 45.7 45.5 -51 -50 -49 -48 -47 -46 -45 -44 -43 -41.8 'C		45.7	4:08:28 PM
37	Lighting Panel back side Pharma Plant MLDB 01 / F 20	47,2 42,1 45,8 45,8 42,1 45,8 42,1 45,8 46 44 -44 -42 -40 -33 -36 -33,0 -C		47.2	4:30:02 PM
38	Lighting Panel Back Side 2 D Plant M L D B U 1 / F 19	42.2 41.1 41.9 40.6 33.2 C		42.2	4:30:31 PM
39	Lighting Panel back side Aldehyde Plant MLDB 01 / F18	42.1 42.1 42.1 44 47 46 -45 -44 -45 -44 -43 -42 -41 -39.6 -C		45.9	4:30:47 PM
40	Lighting Panel back side Powerhouse D B 3	40,9 45,3 40,9 45,3 40,9 45,3 41,6 41,6 41,6 41,6 41,6 41,6 41,6 41,6		45.3	4:31:02 PM

No	Location	Thermal image	Normal image	Temp° C	Time
41	3 panel PC 03 / Capacitor 100 kVAR	55.2 -54 -52 -50 -43 -46 -44 -42 -42 -40.1 -C		47.1	4:36:39 PM
42	3 panel PC 03 / 10 Capacitor 2 x 50 kVAR O / G	-60.3 -58 -56 -54 -52 -50 -43 -43 -43 -43 -7 C		48.1	4:36:50 PM
43	3 panel Trane Chiller West 450 T R	46.4 45.9 47.6 -52 -50 -48 -46 -44 -42 -5 -50 -48 -46 -44 -52 -50 -48 -46 -44 -42 -5 -50 -50 -50 -50 -50 -50 -50 -50 -50		47.6	4:37:00 PM
44	Lighting Panel Powerhouse DB MLDB 01 / F09	42.0 (13.3 -50 -48 -46 -44 -42 -39.7 'C		48.5	4:40:52 PM
45	Capacitor Panel -2 Incomer	43.8 42.9 43.6 43.6 -54 -52 -50 -48 -44 -44 -42 -39.1 -C		43.8	4:40:59 PM

No	Location	Thermal image	Normal image	Temp° C	Time
46	Capacitor Panel -2 Capacitor O / G -1	44.3 44.5 42.6 42.6 42.6 42.6 42.6 42.6 42.6 42.6		44.5	4:44:37 PM
47	Capacitor Panel -2 Capacitor O / G - 4	60.0 536 54 55 54 54 50 43 46 44 42 40.0 °C		58.2	4:47:46 PM
48	Capacitor Panel -2 Capacitor O / G - 6	48.3 47.1 92 48.3 47.1 48.3 47.1 48.3 47.1 46 443 42.0 C		48.3	4:49:07 PM
49	Capacitor Panel -2 Capacitor O / G - 7	42.9 54 54 54 54 54 54 54 54 54 54 54 54 54		54.7	4:49:15 PM
50	Capacitor Panel -2 Capacitor O / G - 8	73 4 -68 -64 -60 -56 -52 -43 -44 -40 -36 9 -C		54.7	4:49:25 PM

No	Location	Thermal image	Normal image	Temp° C	Time
51	Capacitor Panel - 3 incomer	444 444 444 444 45 42.1 46 44 47 46 44 43 42 41 40 38,8 7C		45.5	4:53:00 PM
52	Capacitor Panel 3 ,2 x 50 kVAR Capacitor (F1)	43.9 43.9 42.1 41.9 65.7 -54 -52 -50 -43 -44 -44 -42 -40 -38 -36 -34.3 -C	E F E	43.9	4:53:19 PM
53	Capacitor Panel 3, 2 x 50 kVAR Capacitor ( F 2 )	42,1 42,2 42,9 42,1 42,2 42,9 -54 3 -52 -50 -48 -46 -44 -42 -40 -38 1 -C		42.9	4:53:25 PM
54	Capacitor Panel - 4 Main Incomer	43.6 43.0 43.4 43.6 43.0 43.4 43.3 43.0 44.0 45 44 43 42 41 40 39.1 7C		44.0	4:53:38 PM
55	Capacitor Bank - 4 , 15 kVAR	40.7 40.9 41.0 410 410 410 410 410 410 410 410 410 41		46.9	5:01:10 PM

No	Location	Thermal image	Normal image	Temp° C	Time
56	Capacitor Panel 4 , 50 kVAR Stage -1	45,5 ^{19,2} 42,7 -56,2 -54 -52 -50 -48 -44 -44 -42 -39,1 -C		49.2	5:03:13 PM
57	Air Compressor 2012 Main Incomer	41.9 478 11.7 52 50 43 43.1 43.3 53.0 -55,1 -54 -52 -50 -43 -46 -44 -42 -43 -52 -50 -43 -46 -44 -42 -59 -59 -59 -43 -59 -59 -59 -59 -59 -59 -43 -59 -44 -59 -59 -59 -44 -59 -59 -44 -59 -44 -59 -59 -44 -59 -44 -59 -44 -59 -44 -59 -44 -59 -44 -59 -44 -59 -44 -59 -44 -44 -45 -59 -59 -59 -44 -59 -59 -59 -59 -44 -44 -42 -59 -59 -59 -59 -59 -59 -59 -59		53.0	5:51:28 PM
58	UAC P2010 Incomer	49,2 42,9 49,2 42,6 5,4 42,6 5,4 42,6 5,4 42,6 5,4 42,6 42 42 -51 -54 -51 -43 -45 -42 -39 -55,9 -57 -54 -51 -43 -45 -45 -57 -51 -51 -52 -52 -53 -57 -54 -51 -51 -51 -51 -52 -52 -53 -55 -51 -51 -51 -51 -51 -51 -51 -51 -51		49.2	5:54:06 PM
59	Air Compressor 2010 I / C	39,9 54,8 54,8 54 54 54 54 54 54 54 54 54 54 54 54 51 48 45 42 42 -33 37.3 *C		60.1	6:00:24 PM
60	Boiler House Block - 25 Air Compressor UACP 2012	42, 1 42, 1 42, 1 43, 1 33, B -52, 0 -50 -48 -44 -44 -42 -40 -33 -36 -34, 2 -5 -50 -48 -48 -48 -46 -44 -38 -36 -34 -36 -34 -36 -34 -36 -36 -36 -36 -36 -36 -36 -36		45.8	6:01:57 PM

No	Location	Thermal image	Normal image	Temp° C	Time
61	UACP 2016 I / C from PC 02 / 113	56.5 -52 -50 -48 -44 -44 -44 -44 -42 -38 -36 -34.3 -36 -34.3 -36 -34.3 -36		55.5	6:03:28 PM
62	MC 208 / 08 Chilled Water 75 HP ( west ) North Chiller	46.8 45.4 45.4 48.3 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54		48.3	6:32:35 PM
63	MC 208 / F08 Chilled Water 75 HP (West) North Chiller	53.5 53.5 51.7 51.7 51.7 51.7 51.7 51.7 51.7 51		53.5	6:33:23 PM
64	MC 2 08 / F06 Pharma Chiller O / G	43.6 43.8 37.3 43.7 37.3 43.8 50,5 50,5 51 48 45 42 7.3 35.7 °C		53.3	6:34:18 PM
65	500 TR Pharma Cooling Tower	-60.3 -58 -56 -52 -50 -48 -46 -44 -42 -39.4 'C		52.5	6:40:10 PM

No	Location	Thermal image	Normal image	Temp° C	Time
66	500 TR Pharma Cooling Tower	53.0 57.8 53.2 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55		57.8	6:40:20 PM
67	Chiller Unit UCCH 2022	37 17,0 42,8 44,1 55.4 -51 -43 -42 -39 -36 -33 -30 -26.2 -C		44.7	7:58:22 PM
68	Chiller Unit UCCH 2022	35.6 35.6 35.6 49 42 -28 -28 -28 -28 -28 -28 -28 -21 -15.6 -C		45.2	7:58:37 PM
69	Chiller Unit UCCH 2019	53.5 -51 -44 -45 -44 		48.6	7:59:56 PM
70	Chiller Unit UCCH 2018	25,5 25,5 38,5 48,8 38,5 48,8 48,0 7 21,9 7 C		47.0	8:00:05 PM

No	Location	Thermal image	Normal image	Temp° C	Time
71	Chiller Unit UCCH 2019	495 48 46 44 42 40 -38 -36 -34 -32 -30 -273 C		46.1	8:04:17 PM
72	Chiller Unit UCCH 2019	42.2 43.3 42.2 43.3 43.4 44 40 -36 -32 -32 -28 -28 -26 2 -28 -26 -2 -28 -26 -2 -28 -26 -2 -28 -26 -2 -28 -26 -2 -28 -26 -2 -28 -26 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3		48.9	8:04:31 PM
73	Chiller Unit UCCH 2019	59.1 58.3 sub 59.1 58.3 sub 59.1 58.3 sub		53.3	8:04:38 PM

14.2.3 Category : Serious : No of Locations : 13 : Temp: 60 - 70 °C

No	Location	Thermal image	Normal image	Temp° C	Time
1	5 MVA Transformer Side View	-69.6 -65 -60 -55 -50 -45 -37.8 °C		69.3	12:51:05 PM

No	Location	Thermal image	Normal image	Temp° C	Time
2	1 Chiller south PC 01 / 06	48.6 47.0 52.9 59 48.6 47.0 52.9 59 -54 -51 -48 -45 -42.8 °C		65.9	1:16:17 PM
3	1 IPCA PC 01 / 09 O / G	73.4 -68 -64 -60 -56 -52 -48 -43.5 °C		71.1	1:18:40 PM
4	EPCC-2 Cooling Tower South P C 2 / 03	65.2 61.3 65.2 61.3 219 - 124.4 - 110 - 100 - 90 - 80 - 70 - 60 - 50 - 40 - 25.1 °C		121.9	1:23:59 PM
5	2 New 120 HP Air Compressor West	40,4 47.0 66-2 99.4 -90 -80 -70 -60 -50 -40 -25.9 °C		98.1	1:28:49 PM
6	PCC Panel - 3 Z L D O / G	65.3 -62 -60 -53 -56 -54 -52 -50 -43 -46 -43.4 'C		64.3	4:04:05 PM

No	Location	Thermal image	Normal image	Temp° C	Time
7	5 MVA Transformer LT Incomer	771.6 -69 -66 -63 -60 -57 -54 -51 -48 -43.1 -C		70.5	4:13:19 PM
8	5 MVA Transformer Secondary Side LT Main Incomer	61.1 66.1 65.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		65.9	4:13:29 PM
9	5 MVA Transformer Secondary Side LT Main Incomer	- 67.1 - 64 20 3 - 66 20 - 55 4 - 54 - 55 - 54 3 - 54 - 54 - 55 - 54 3 - 54 - 54 - 54 - 54 - 54 - 54 - 54 - 54		63.2	4:13:39 PM
10	Lighting Panel Main Incomer	-77.8 -72 -63 -64 -60 -56 -52 -43 -44 -40 2 'C		63.7	4:39:18 PM
11	Capacitor Panel -2 Capacitor O / G -2	47.8 47.9 47.9 47.9 47.9 47.9 47.9 47.9 47.9		64.0	4:45:02 PM

No	Location	Thermal image	Normal image	Temp° C	Time
12	Air Compressor UACP 2010 Incomer	46.4 46.9 46.4 46.1 46.1 43.4 46.1 43.4 46.1 43.4 40 -35.1 °C		65.0	5:57:53 PM
13	Chiller Unit UCCH 2022	16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.9 16.9 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0		62.8	8:00:45 PM

## 14.2.4 Category : Critical : No of Locations : 28 Temp: > 70 °C

No	Location	Thermal image	Normal image	Temp° C	Time
1	5 MVA Transformer Main View	-102.1 -90 -81 -72 -63 -54 -45 -38.2 °C		83.9	12:49:46 PM
2	5 MVA Transformer H T Side	41.6 85.4 45.4 43.4 43.2 43.4 43.2 43.4 43.2 43.4 43.2 -80 -70 -60 -50 -40 -28.3 °C	RIMARY SUBE	85.4	12:50:15 PM

No	Location	Thermal image	Normal image	Temp° C	Time
3	5 MVA Transformer Side View	47.0 55.8 -76.3 -70 -65 -60 -55 -50 -45 -40.7 °C		75.1	12:50:53 PM
4	5 MVA Transformer Bus Bar Side - LT	99,77 99,77 74,8 74,8 74,8 75,7 70 60 -50 -40 -25.6 °C		111.1	12:51:24 PM
5	5 MVA transformer LT Bus Bar Side	80 9 115.2 100 90 80 90 80 90 80 -70 -60 -50 -40 -25.6 °C		109.0	12:51:32 PM
6	MV Panel Room 5 MVA Transformer Side View	-100.5 -90 -80 -70 -60 -50 -40 -33.6 *C		108.0	12:51:47 PM
7	1 New I B U Private PC 01 / 02	44.3 46.0 43.4 9.0 9.0 9.0 -70 -60 -50 -40 -25.9 °C		96.0	1:11:42 PM

No	Location	Thermal image	Normal image	Temp° C	Time
8	01 Cooling Tower ( west ) PC01 / 04 O / G	92.1 -81 -72 -63 -54 -45 -36 -29.9 °C		85.9	1:14:08 PM
9	1 PC Packing PC 01 / 05 O / G	45.9 56.1 76.4 48.5 45.9 56.1 76.4 48.5 -55 -50 -44.0 °C		76.4	1:15:07 PM
10	PCC 2 Chiller Plant South PC 02 / 05	43.8 46.5 5.3 73.4 -70 -65 -60 -55 -50 -42.4 °C		75.3	1:25:16 PM
11	2 TRANE Chiller East 300 TR	42.6 55.4 58.1 2.3 - 100 - 80 - 60 - 39.6 °C		150.8	1:31:01 PM
12	2 Lighting PC 02 / 17	47.7 51.3 59.7 76.3 -70 -65 -60 -55 -50 -45 -41.3 °C		75.2	1:32:05 PM

No	Location	Thermal image	Normal image	Temp° C	Time
13	Capacitor Panel -1 Incomer	86.4 -77 -70 -63 -56 -49 -40.2 *C		84.3	3:53:13 PM
14	Capacitor Panel -1 Capacitor - 3 O / G	77.9 -70 -65 -60 -55 -50 -45 -42.0 °C		74.1	3:54:38 PM
15	Capacitor Panel -1 Capacitor - 5 O / G	60.2 -70 -65 -60 -55 -50 -45 -40.8 -61 -40.8 -60 -55 -50 -45 -40.8 -60 -55		72.8	3:55:13 PM
16	MV Panel Room Capacitor Panel -1 Capacitor No - 2 O / G	73.5 -75 -70 -65 -60 -55 -50 -43.8 °C		73.5	3:58:54 PM
17	PCC Panel - 3 Z L D O / G	62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 63.5 64.5 60.5 65.5 64.5 60.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5		73.7	4:04:21 PM

No	Location	Thermal image	Normal image	Temp° C	Time
18	PCC -03 Panel PC 03 / 06 IPCA 3rd Floor new Trane Chiller Main O / G	-79.7 -76 -72 -68 -64 -60 -56 -52 -48 -43.0 -C		77.1	4:05:54 PM
19	Capacitor Panel -2 Capacitor O / G -3	72.9 72.9 72.9 57.4 57.4 55.2 55.2 72.9 72.9 69 -66 -63 -60 -57 -54 -51 -43 -45 -42.1 -C		72.3	4:45:14 PM
20	Capacitor Panel 4 , 50 kVAR Stage - 1	49.6 49.6 49.6 49.6 49.6 49.6 49.6 49.6		75.3	5:02:11 PM
21	Capacitor Panel 4 , 50 kVAR Stage -1	56.6 56.6 56.6 56.7 56.7 56.7 56.7 56.7		109.2	5:02:30 PM
22	Capacitor Panel 4 : 50 kVAR No: 2	-118.1 -108 -99 -90 -81 -72 -63 -54 -45 -37.1 -C		110.0	5:03:35 PM

No	Location	Thermal image	Normal image	Temp° C	Time
23	UACP 2016 Incoming From PC0 2113	42,3 54,6 10,7 42,9 37,6 37,1 42,9 37,6 37,1 -104,8 -96 -88 -96 -88 -80 -72 -64 -56 -48 -40 -31.0 *C		101.7	5:52:46 PM
24	Boiler House Air Compressor 2010 Incomer	55,6 56,5 41.4 -75 -70 -65 -60 -56 -50 -45 -40 -37.2 -C		80.3	5:55:44 PM
25	Boiler House Air Compressor 2010 Incomer	-102.7 -98 -91 -84 -77 -70 -63 -56 -49 -49 -42 -36.8 -C		92.2	5:56:26 PM
26	Cooling Tower Electrical Panel Room I / C from PC 02 / 08	51.6 55.3 45.3 -117.4 -108 -99 -90 -81 -72 -63 -54 -45 -36.7 'C		115.2	6:31:07 PM
27	MC 208 / F 06 Pharma Chiller O / G	47.1 46.9 45.5 45.5 45.5 -50 -45 -40 -36.2 *C		79.9	6:34:07 PM

No	Location	Thermal image	Normal image	Temp° C	Time
28	500 TR Pharma Cooling Tower	-76.4 -72 -68 -64 -60 -56 -52 -48 -44 -41 -38.2 -7		75.0	6:39:58 PM

#### 14.3 SUM - UP

The abnormalities noticed is summed up below as per the severity status

No	Severity	No. of Locations
1	Mild	13
2	Moderate	73
3	Serious	13
4	Critical	28
Total		127

#### Table 14.1: Abnormalities Noticed : Categorization

The occurrence of faults can be attributed to

- (i) Suspected insufficient airflow
- (ii) Loose connections.
- (iii) Deterioration of distribution lines ( Cables )

The possible remedies are

- (i) Check & Re do / Re terminate the cables / busbars etc as per the observations made.
- (ii) Provide adequate cooling.
- (iii) Provide new & properly sized (Current carrying capacity) cables

These abnormalities shall be attended to at the earliest opportunity

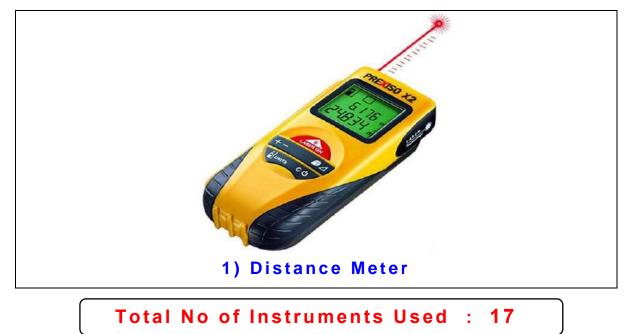


## 15.1 THERMAL - 7



## 15.2 FLOW - 3




#### 15.3 PRESSURE - 2



15.4 ELECTRICAL - 4



#### 15.5 OTHERS - 1

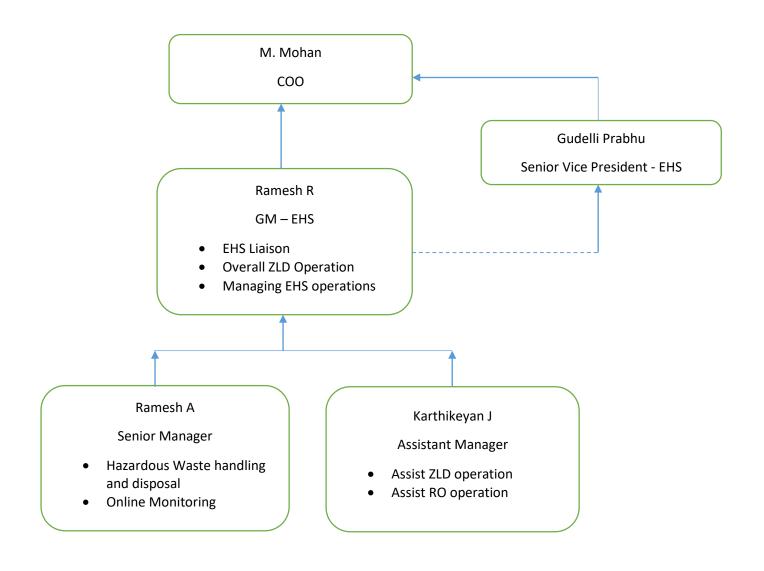


## Annexure -7

Name of the Plant	Scientific Name	Existing
Silver wattle	Acacia dealbata	20
Sarakonnai	Cassia Fistula	10
Yellow Konnai	Cassia siamea	18
Gulmohar	Delonix regia	20
Neem Tree	Azadirachta indica	65
Coconut Tree	Cocos nucifera	110
Mango Tree	Mangifera indica	15
Cashew Tree	Anacardium occidentale	100
Bamboo Tree	Bambusa vulgaris	1500
Jack tree	Artocarpus heterophyllus	11
Guava Tree	Psidium guajava	10
Sapota	Manilkara zapota	12
Teak	Tectona grandis	100
Eucalyptus	Eucalyptus globus	12
Palm Tree	Syagrusromanzoffiana	9
Drumstick	Moringa oleifera	15
Tamarind	Tamarindus indica	5
Citrus	Citrus limon	25
Christmas	Araucaria columnaris	15
Pomegranate	Punica granatum	12
	Total	2084

# Greenbelt details and Photograph












## **Environment Management Cell Organogram**



Annexure -9

		CSR Spent details of Solara - Pondy from 2018 t	o 2021 (4 ye	ears)		
S. No	Title	Sub - Title	2018-19	2019-20	2020-21	2021-22 upto Nov 2021
		Best Student Award	131910	107000	34000	83310
	Infra: Exan Vasaj Education Spon Life S Kalaj suppo Infra:	Law College & University Support / Digital Library Infrastructure sponsored to Law College	118900	162500	15000	565195
1		Examination Skill Development Program - Vanam Vasapadum / Neet Coaching	222080	300000	-	-
		Sponsorship for Local Rural Sports	15000	45000	91531	-
		Life Skills Trrainng 7th, 8th, 9th &11th students @ Kalapet Schools & Students Counselling & Teacher support program to Govt Schools of Kalapet	240000	196000	-	-
		Infrastructure improvement @SVRCC	-	500000	-	275000
2		Total	727890	1310500	140531	923505
	Health	Dispensary	1489788	1945597	1703021	1009096
		Maintenanace of RO Plants	1541240	1533750	2043906	839196
		Awareness program on Personal Hygenine, Waste Mgt & Health Camps	-	260825	-	-
		Repair & Replacement of RO plants / Tsunami Quarter plant	98493	417104	-	-
		Total	3129521	4157276	3746927	1848292
3	Branding & Others	NGO / Branding / Others	847253	188900	233828	373002
		Local Poilice Station support	-	-	277832	63000
		Covid Pandemic Relief Activities / Flood Relief Activities / Covidcare Centre in University / Fund given to CM for	-	-	1445702	2483636
		Covid care activities				
		New Inintiative	190000	-	-	35910
		Sponsorship - Laxmi SV Machine	-	-	100000	-
		Total	1037253	188900	2057362	2955548
		Grand Total	4894664	5656676	5944820	5727345

## **CSR ACTIVITY**



## Raw materials storage area Photograph



# Diesel Generator set

# Annexure - 11











......

CUMMERS 1010 HOA DU



# Web cam and Flow meter photograph



ource Sewage



Annexure -12

14:4

2022





#### FORM-V

#### [See Rule12(2)]

#### CERTIFICATE OF REGISTRATION FOR EXISTING USER OF GROUNDWATER

#### Registration No.: 4-2023/PGWA/CR/-Renewal/Industrial & Other/2022-23

With reference to his/ her application No. 841 dated 20-03-2023 M/s. SOLARA ACTIVE PHARMA SCIENCES LIMITED, Mathur Road, Periyakalapet, Puducherry 605 104 is hereby granted certificate of registration recognising the use of Tube well located at R.S. No 33 at KALAPET village of OULGARET commune in PUDUCHERRY region for Industrial & Other(Industrial) purpose, conforming to the following specifications:-

(i) Type of Well	:	Tubewell	
(ii) Depth	:	220 Metres	
(iii) Diameter	•	200 Millimetres	
(iv) Aquifer tapped	:	Cuddalore Sandstone	
(v) Type of Pump installed	:	Submercible	
(vi) H.P of the motor pump installed	:	15 H.P.	
(vii) No . of hourse operated	:	14Hrs.	
(viii) Quantity of groundwater extracted per day	:	115000 Litters / per day	
(ix) Quantity of groundwater transported per day	(instruction)	0 Litters / per day	
(x) Well Status	9•	Functioning	
	<ul> <li>(ii) Depth</li> <li>(iii) Diameter</li> <li>(iv) Aquifer tapped</li> <li>(v) Type of Pump installed</li> <li>(vi) H.P of the motor pump installed</li> <li>(vii) No . of hourse operated</li> <li>(viii) Quantity of groundwater extracted per day</li> <li>(ix) Quantity of groundwater transported per day</li> </ul>	(ii) Depth:(iii) Diameter:(iv) Aquifer tapped:(v) Type of Pump installed:(v) Type of Pump installed:(vi) H.P of the motor pump installed:(vii) No . of hourse operated:(viii) Quantity of groundwater extracted per day:(ix) Quantity of groundwater transported per day:	<ul> <li>(ii) Depth</li> <li>(iii) Diameter</li> <li>(iii) Diameter</li> <li>(iii) Diameter</li> <li>(iv) Aquifer tapped</li> <li>(v) Aquifer tapped</li> <li>(v) Type of Pump installed</li> <li>(v) Type of Pump installed</li> <li>(vi) H.P of the motor pump installed</li> <li>(vii) No . of hourse operated</li> <li>(viii) Quantity of groundwater extracted per day</li> <li>(ix) Quantity of groundwater transported</li> <li>(ix) Quantity of groundwater transported</li> <li>(viii) Quanti</li></ul>

## 2. This certificate is also subject to the following condition :-

i. The certificate holder should not deviate from the specifications regarding the well abovementioned.

ii. The GroundWater Authority or any person duly authorized by it shall have the right to enter and inspect the place with such assistance as may be necessary to satisfy whether the conditions and restrictions specified in this certificate are being complied with.

iii. The GroundWater Authority, for technical reasons may alter, amend or vary the terms of certificate of registration giving 15 days notice to the certificate holder specifying the reasons.

iv. The certificate holder should maintain a register in Form - VII - (A) and should upload the monthly report in Form - VIII - (A) appended.

#### (V) Any other conditions (to be specified)

(a) This certificate is valid till 31-03-2025

(b) The certificate holder should apply for renewal in Form-IV at this authority's

website[https://pgwa.py.gov.in], before 90 days its validity period of this Certificate of Registration

(i.e.) on or before 31.12.2024. Otherwise, it will attract a late fee of Rs.1000/-.

(c) A copy of this Certificate of Registration should be kept in the industry and the same has to be shown during the inspection of Government officials.

(d) The daily water consumption register should be strictly and properly maintained in accordance with Form - VII - (A) and a monthly report on consumption of groundwater from the tube well in Form - VIII - (A) should be submitted at this authority's Website [https://pgwa.py.gov.in] before 10th day of succeeding month without fail.

(e). the certificate holder should remit the fee for groundwater extraction from this tubewell @ Rs.1.40 (One Rupees Fourty Paise Only) per every 1000 liters of groundwater extraction.at this authority office, along with the above said monthly report.

(f) Any deviation / Violation of the above / below if any mentioned conditions will attract penal action as per the sub - section (b) (i) & (ii) of Section 20 of 'The Pondicherry Ground Water (Control & Regulation) Act '[(i) for the first offence with fine which may extend to five thousand rupees: and (ii) for the second and subsequent offence, with imprisonment for a term which may extend to six months, or with fine which may extend to ten thousand rupees, or with both].

(g) This Certificate of Registration will liable for cancellation, if the certificate holder failed to comply with the conditions stipulated in this Certificate of Registration, as per Sub Section (b) of Section 12 of 'The Pondicherry Ground Water (Control & Regulation) Act, 2002'

h)The total drawl of ground water from the tubewell should not exceed 1,15,000 lts per day (i.e.1,10,000 lts for M/s. Solara Active Pharma Science Limited and 5,000 lts for M/s. Stride Shasun Limited Unit-II).




Place: Pondicherry Date: 20-03-2023

Signature of Member Secretary GroundWater Authority



# Rain water harvesting system Photograph



## Hazardous chemicals storage area

## Spent carbon storage area



Spent solvent storage area









# Automated Filling system Photograph

# 







## Fire fighting system Photograph







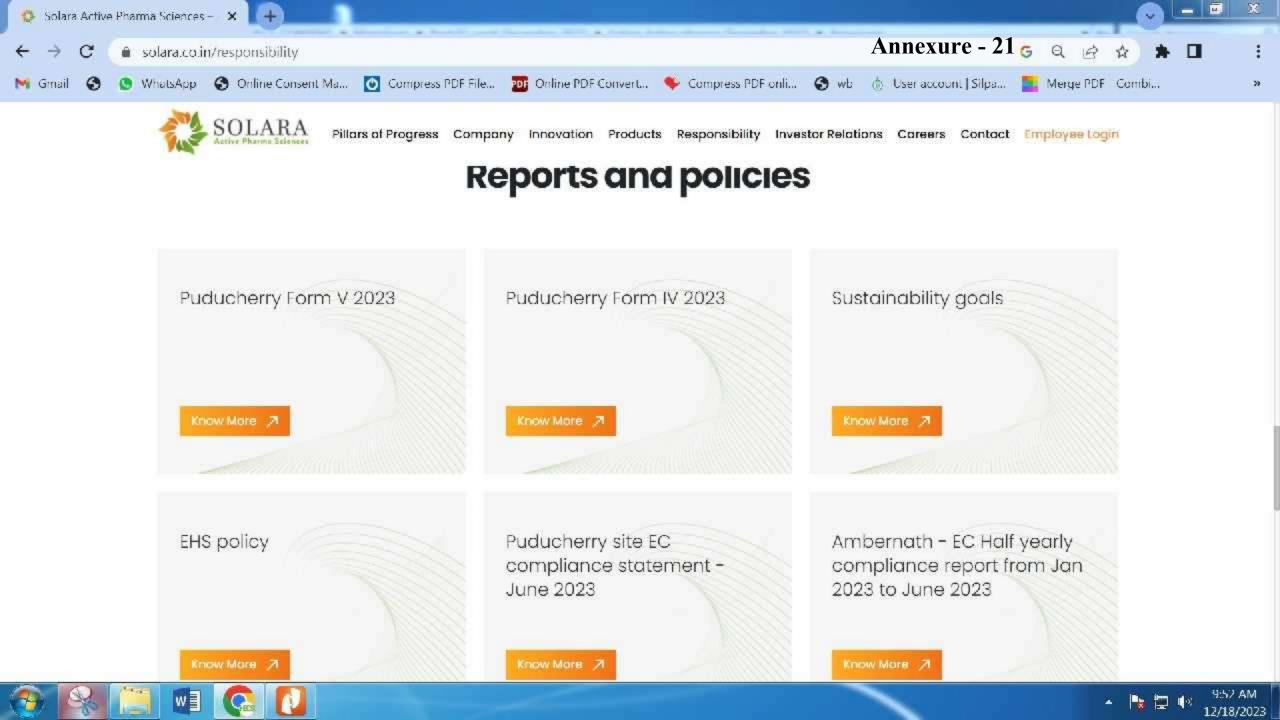
# Personal protective equipment photograph





# Safety Training Photograph










# Total No. of employees attended the training "Basic Fire Safety" in all category

Category	Total no. of employees attended the training "Basic Fire Safety"
Employee	489
Neem	81
CL	2
Security	7
Fire Guard	5





# Vehicle parking area photograph





# **ENVIRONMENT, HEALTH & SAFETY POLICY**

#### Solara Active Pharma Sciences Limited is committed to proactively adopt, improve and maintain a high standard of Environmental, Health & Safety (EHS) across all sites and locations.



We shall strive to achieve **Goal Zero** i.e. zero safety accidents, zero injuries and zero incidents that cause harm to the environment... To move to **Goal Zero** we will:



Comply with all applicable requirements (Legal, Others) with regards to EHS



Inculcate a positive EHS culture throughout the organization



Foster awareness and provide appropriate training for all employees to support Goal Zero



Provide a safe & healthy workplace to our employees, contractors, sub-contractors, visitors and all other stakeholders



Encourage a collaborative and a participative approach towards EHS with all employees, contingent employees and visitors on site.



Enable all employees, contingent employees and visitors to identify and report EHS hazards, conditions and near misses



Reduce the EHS impact of our products throughout their lifecycle



Make best efforts to work with suppliers and business partners who run safe and environmentally responsible operations



Work towards mitigation of pollution and conservation of precious resources like water and energy by optimizing their utilization



Establish specific and measurable objectives to achieve continual improvement of our EHS performance. Monitor performance of all sites / locations on a regular basis and encourage achievement of the objectives

Bharath R Sesha Managing Director & Chief Executive Officer

Issue Date: 21.09.2020 Next revision date: 21.09.2023



# சுற்றுச்சூழல் சுகாதாரம் மற்றும் பாதுகாப்பு கொள்கை

சொலாரா ஆக்டிவ் பார்மா சயின்சஸ் லிமிடெட் நிறுவனம், முழுமைக்கும் சுற்றுச்தூழல், சுகாதாரம் மற்றும் பாதுகாப்பு தொடர்புடைய உயர்தரமான கொள்கையை பின்பற்றுவது, மேலும் அவற்றை மேன்மைப் படுத்துவதை குறிக்கோளாகக் கொண்டு முனைப்புடன் செயல்படுத்துதல்.



சற்றுச்தூழலக்கு கேடு விளைவிக்கும் காரணிகளற்ற மற்றும் விபத்து இல்லாத தூழலை உருவாக்கும் இலக்கை அடைய கீழ்கண்ட வகையில் முயற்சி செய்வோம்.



சுற்றுச்சூழல் சுகாதாரம் மற்றும் பாதுகாப்பு குறித்த சட்டம் சார்ந்த அல்லது நமது நிறுவனத்திற்கு பொருந்தும் மற்ற அனைத்து தேவையான விதிமுறைகளை செயல்படுத்துதல்.



நமது நிறுவனம் முழுவதற்கும் பொருந்தும் தெளிவான உறுதியான சுற்றுச்துழல், சுகாதாரம் மற்றும் பாதுகாப்பு நடை முறைகளை பின்பற்ற அறிவுறுத்தல்

நமது இலக்கை எவ்வித குறைகளும் இன்றி அடைய அதற்கு ஏற்ப அனைத்து தொழிலாளர்களுக்கும் உரிய பயற்சி அளித்தல் மற்றும் அவர்களிடையே விழிப்புணர்வை ஏற்படுத்துதல்



நமது தொழிலாளர்கள், ஒப்பந்தக்காரர்கள், துணை ஒப்பந்தக்காரர்கள், பார்வையாளர்கள் மற்றும் அனைத்து பிற பங்குதாரர்களுக்கும் பாதுகாப்புடன் கூடிய சுகாதாரமான பணி செய்யும் இடத்தை உருவாக்குதல்



பணிசெய்யும் இடத்தில் உள்ள அனைத்து பார்வையாளர்கள், தொழிலாளர்கள் மற்றும் ஒப்பந்த தொழிலாளர்களை சுற்றுச்துழல், சுகாதாரம் மற்றும் பாதுகாப்பு தொடர்புகளை ஒருங்கிணைந்த முனைப்புடன் செய்ல்படும் அணுகு முறையை ஊக்குவித்தல்



தொழிலாளர்கள், ஒப்பந்த அனைத்து தொழிலாளர்கள் மற்றும் பார்வையாளர்கள் சுற்றுச்தூழல், சுகாதாரம் மற்றும் பாதுகாப்பு இவற்றில் ஏற்படும் ஆபத்து மற்றும் கேடு விளைவிக்கும் கண்டு காரணிகளை இனம் அவற்றில் உள்ள குறைபாடுகளை நிர்வாகத்திற்கு தெரிவித்தல்

நமது உற்பத்தி பொருட்களின் பயன்பாட்டு காலம் வரை, ஏற்படும் சுற்றுச்தூழல், சுகாதாரம் மற்றும் பாதுகாப்பு தொடர்பான எதிர் விளைவுகளை மட்டுப் படுத்துதல்

சுற்றுச்தூழல், சுகாதாரம் மற்றும் பாதுகாப்பை மேம்படுத்தும் பொறுப்புடன் செயல்படும் வணிகபங்குதாரர் மற்றும் தேவைப்படும் பொருட்களை நிறுவனத்திற்கு வழங்குபவர்களுடன் இ**ழைக்குந்துர்கூடிவன் இசுவன்** மூயற்சி மேற்**தொளேற்றிகுக்ல்** 

அரிதான வள ஆதாரங்களான நீர் மற்றும் மின்சாரத்தை சேதமின்றி அதிகமாக பயன்பெறும் வகையில் பயன்படுத்துதல் மற்றும் அவற்றை பாதுகாத்தல் / பராமரித்தல். மேலும் சுற்றுச்தூழல் தூய்மை கேடுகளை மட்டுப்படுத்தும் நோக்கோடு செயல்படுதல்

நமது சுற்றுச்தூல், சுகாதாரம் மற்றும் பாதுகாப்பு செயல்பாடுகள் தொடர்ந்து மேன்மை அடையும் வகையில், குறிப்பிட்ட அளவீடு / மதிப்பீட்டு கொள்கைகளை உருவாக்குதல். அனைத்து பணி இட செயல்பாடுகளை தொடர்ந்து கண்காணித்தல். மற்றும் நமது கொள்கைகளின் நோக்கம் நிறைவேற ஊக்குவித்தல்.

Justan Ton

 $(\mathbf{O})$ 

**Bharath R Sesha** Managing Director & Chief Executive Officer

Issue Date: 21.09.2020 Next revision date: 21.09.2023

# EMP Budget

Annexure -24

	Investment in Crores		
Particulars	Existing	Proposed	After Change in product mix
		EMP	
MEE	10	Nil	10
ETP	15	Nil	15
RO Plant	4	Nil	4
Green Belt Area	1	Nil	1
DG with Acoustic	2	Nil	2
Online Monitoring system	1	Nil	1
		Air Pollution Equipment's	
Boiler & Chimney	4.5	Nil	4.5
DG Chimney	0.5	Nil	0.5
Scrubber	0.25	Nil	0.25
	Environ	mental health and safety m	ieasures
Safety Equipment's	1	Nil	1
OHC	0.5	Nil	0.5
Annual Medical Check up	0.25	Nil	0.25
Total	40	0	40
Recurring Cost/month	1.5	0	1.5

on of the workshop sfer concepts and isses interesting by e monotony, " add-er from an Army ol at Hyderabad. persons from Na-vol of Drama, Na-juare Panda, SriMa al School of Trans-Yoga Auroville, Yo-vlovement and Mo-cation, are among ations involved in op.

attoms map, of the Sellimedu it High School dis-r craftwork, titled from Nothing. This a part of the com-solution that SAS ing to Army Public

# gave up land for mines'

EXPRESS NEWS SERVICE

A joint committee of various outfits, held a public meeting at Neyveli petitioned the NLCIL management demanding a monthly salary of \$50,000 and compensation for those who gave their houses for the mine. They warned NLCIL they will launch a human chain protest on May 18, if their demands were not met in ten days. NLCIL Urimai Meetpu Kot-tamaipinar (Joint Committee) had organised a public meeting at Periyar Square in Neyveli on

Wednesday, NLCIL Jeeva Con-tract Workers Union special secretary M Sekar led the meet-ing, TN Association Joint As-sociation State president P Ravindran, district and State-level officials of MMK, NMK and unions were present. In this meeting, they also said that contract workers who were missed out in seniority jobs for the kin of those who gave lands to NLCIL, Compen-sation and alternative residen-tial areas must be given to resi-dents to who gave their houses for mines, they demanded.



### Advertisement copy in Tamil (vernacular language)



தினபூமி, thinaboomi.com Сю 07, 2022



Annexure - 26

Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2655154

13/05/2022

То

Member Secretary Puducherry Pollution Control Committee, 3 rd. Floor, PHB Building, Anna Nagar, Puducherry -605005.

Dear Sir,

# Sub: (1) Environmental clearance - EC22B058PY151130 dated 27.04.2022., to the proposed project activity Under the provision of EIA notification 2006 – Regarding

With reference to the above subject (1), as per the environmental clearance terms and conditions specified, under Miscellaneous Section X, (I) & (II), we like to submit the details for your consideration.

-----X ------X

(X) (I) The project proponent shall make public the environmental clearance granted for their project along with the environmental conditions and safeguards at their cost by prominently advertising it at least in two local newspapers of the District, of which one shall be in the vernacular language within seven days and in addition this shall also be displayed in the project proponent's website permanently.

we have given advertisement in three Local newspapers, in that two in vernacular language and one in English, we have enclosed the copy of the evidence for your kind reference.

We have published the Environmental clearance copy in our Solara website.

(X) (II) The copies of the environmental clearance shall be submitted by the project proponents to the Heads of local bodies, Panchayats and Municipal Bodies in addition to the relevant offices of the Government (Industries Department and PPCC) who in turn has to display the same for 30 days from the date of receipt.





Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2655154

We have submitted the copy of Environmental Clearance letter to Directorate of Industries & commerce (DIC), Oulgaret Municipality and Puducherry Pollution Control Committee and copy of the letter is enclosed for your ready reference.

This is for your information and kind consideration.

For Solara Active Pharma Sciences limited

M. Mohan Sr. Vice President (Operations)

#### Reference

- 1: The Copy of Advertisement of EC into Indian Express
- 2. The Copy of Advertisement of EC to Thina boomi in Vernacular Language
- 3. The Copy of Advertisement of EC to Thamizhmurasu in Vernacular Language
- 4. The Copy of Environment Clearance Published in Solara website
- 5. The Copy of submitted letter Directorate of Industries and commerce
- 6. The Copy of submitted letter Oulgaret Municipality
- 7. The Copy of submitted letter Puducherry Pollution Control Committee

e monotony, " adder from an Army ol at Hyderabad. . persons from Naool of Drama, Nauare Panda, SriMa al School of Trans-Yoga Auroville, Yodovement and Mocation, are among ations involved in DD.

of the Sellimedu It High School disr craftwork, titled from Nothing. This a part of the comsolution that SAS ing to Army Public

### Sure up mine tor mineo

### EXPRESS NEWS SERVICE @ Cuddalore

A joint committee of various outfits, held a public meeting at Neyveli petitioned the NLCIL management demanding a monthly salary of ₹50,000 and compensation for those who gave their houses for the mine. They warned NLCIL they will launch a human chain protest on May 18, if their demands were not met in ten days.

NLCIL Urimai Meetpu Kottamaipinar (Joint Committee) had organised a public meeting at Periyar Square in Neýveli on Wednesday NLCIL Jeeva Cor tract Workers Union specia secretary M Sekar led the meet ing, TN Association Joint As sociation State president 1 Ravindran, district and State level officials of MMK, NMI and unions were present.

In this meeting, they als said that contract workers whe were missed out in seniority list must be added, permanen jobs for the kin of those whgave lands to NLCIL. Compensation and alternative residential areas must be given to residents to who gave their house for mines, they demanded.

(A Company of Chennai Port Authority - Govt. of India)

CIN No. U45203TN 1999PL C043322 PUBLIC NOTICE

### It is informed that Ministry of Environment, Forest and Climate Change has accorded CRZ clear ance for "Establishment of IMLD RO Desalination Plant at M/s Kamarajar Port Limited, Vallur Post, Chennai-120" and copies of clearance letters are available with the Tamil Nadu Pollution Control Board (TNPCB) and may also see on the website of the Ministry of Environment, Forest and Climate Change at https://parive.sh.nic.in/.

Dy. General Manager (Civil) 044-27950030 M/s. SOLARA ACTIVE PHARMA SCIENCES LIMITED R.S.No.33 & 34, Mathur Road, Periyakalapet, Puducherry.-605014

### PUBLIC NOTICE

This is to inform the public that by SEIAA, Puducherry has issued Environmental Clearance to M/s. SOLARA ACTIVE PHARMA SCIENCES LIMITED vide letter No.SEIAA/PY/EE/247066/2021 dated: 27.04.2022 for proposed change in product mix without increase in total productions capacity at R.S.No.33 & 34, Mathur Road, Periyakalapet, Puducherry State. The environmental clearance issued by SEIAA, Puducherry (State Environmental Impact Assessment Authority) is available in the official website of SEIAA., Puducherry and clearance are available with the Puducherry Pollution control Committee.

> - M/s. SOLARA ACTIVE PHARMA SCIENCES LIMITED, Authorised Signatory

# CBIC - TUMAKURU INDUSTRIAL TOWNSHIP LTD (CBIC-TITL)

5th Floor, Khanija Bhavan, Race Course Road, Bengaluru – 560 001. Phone No. 22267900, Fax : 22267901 website : www.kiadb.in email: mdcbic23@gmail.com வு எழுதினர்.

மாணவரகளும, 2918 மாண விகள் உட்பட 5901 மாண வர்கள் 10ம் வகுப்பு மாண வர்கள் அரசு பொதுத் தேர்வு எழுதினர்.

பல்வேறு மையங்களில் ஆரணி கல்வி மாவட்ட அலுவலர் சந்தோஷ் ஆய்வு செய்தார். த் தேர்வு எழுதி னர். பல்வேறு மையங்க ளில் ஆரணி கல்வி மாவட்ட அலுவலர் சந்தோஷ் ஆய்வு செய்தார்.

சொலாரா ஆக்ட்டிவ் பார்மா சயின்சஸ் ຄົງເຄີດເ ເ ரி ச எண்: 33 & 34 மாத்தூர் ரோடு பெரியகாலாப்பெட் - 605014 பொது அறிவிப்பு இதனால் பொதுமக்களுக்கு அறிவிப்ப என்னவென்றால் மாநில சுற்றுசூழல் பாதிப்பு மதிப்பீட்டு ஆணையம் புதுச்சேரி கடிதம் எண் SEIAA/PY/EE/247066/2021 தேதி 27/04/2022 வாயிலாக சொலாரா ஆக்ட்டிவ் பார்மா சயின்சஸ் லிமிடெட் (Solara Active Pharma Sciences Limited) அவர்களுக்கு கீழ்க்கண்ட ரி ச எண்: 33&34 பதுச்சேரியில் அமைந்துள்ள கம்பெனிக்கு மொத்த உற்பத்தித்திறனில் அதிகரிப்ப இல்லாமல் கயாரிப்ப கலவையில் மன்மொழியப்பட்ட மாற்றத்தை ஏற்று உற்பத்தி செய்ய சுற்றுசூழல் இசைவு சான்று வழங்கியுள்ளது. அனுமதி ஆவணங்களின் நகல்கள் மாநில சுற்றுசூழல் பாதிப்பு மதிப்பீட்டு ஆணையத்திலும் மற்றும் பகுச்சேரி கட்டுப்பாடு வாரியம் LOITS அலுவலகத்திலும் உள்ளன. சொலாரா ஆக்ட்டிவ் பார்மா சயின்சஸ் லிமிடெட

தினபூமி, thinaboomi.com மே 07, 2022 அடுத்த தயழக பகுத யான மாத்தூர் கிராமம் மாரியம்மன்கோயில் தெரு வைச் சேர்ந்தவர் சரவ ணன் (55), விவசாய கூலி

சொலாரா ஆக்ட்டிவ் பார்மா சமின்சஸ் லிமிடெட் ரீ ச எண் 33 & 34, மாத்தார் ரோடு, பெரியகாலாபெட், புதுச்சேரி–605014.

### பொது அறிவிப்பு

இதனால் பொதுமக்களுக்கு அறிவிப்பது என்னவென்றால் மாநில கற்றுகுழல் பாதிப்பு மதிப்பீட்டு ஆணையம் புதுச்சேரி கடிதம் எண் SEIAA/PY/EE/247066/2021 God 27/04/2022 வாயிலாக சொலாரா ஆக்ட்டிவ் பார்மா சயின்சஸ் BLAGLL (Solara Active Pharma Sciences Limited அவர்களுக்கு கீழ்க்கண்ட ரீ ச எண் 33 & 34 புதுச்சேரியில் அமைந்துள்ள கம்பெனிக்கு பொத்த உற்பத்தித்திறனில் அதிகரிப்பு இல்லாமல் தயாரிப்பு கலவையில் முன்மொழியப்பட்ட மாற்றத்தை ஏற்று உற்பத்தி செய்ய கற்றுகுழல் இசைவு சான்று வழங்கியுள்ளது. அனுமதி ஆவணங்களின் நகல்கள் மாநில கற்றாருழல் பாதிப்பு மதிப்பீட்டு ஆவனங்களின் நகல்கள் மாநில கற்றகுழல் பாதிப்பு மதிப்பீட்டு ஆணையத்திலும் மற்றும் புதுச்சேரி மாக கட்டுப்பாடு வாரியம் அலுவலகத்திலும் உள்ளன. Consumm a bigin unter address alaci

SION UNCO W இருந்து வந்தது. இந்நிலை யில் இன்று காலை அதே பகுதியில் உள்ள ஆழி குளத் தில் துணி துவைப்பதற்காக வீட்டில் இருந்து வேட்டி, சட்டைகளை எடுத்துச் சென்றுள்ளார். அவர் துணி துவைத்துக் கொண் டிருந்தபோது திடீரென வலிப்பு ஏற்பட்டு மயங்கி தண்ணீரில் விழுந்தார். இந்நிலையில் அதே பகு தியை சேர்ந்த பள்ளி சிறு வர்கள் இன்று விடுமுறை என்பதால் குளத்தில் குளிக்க சென்றனர். அங்கு சரவணன் தண்ணீரில் மயங்கி கிடந்ததைக்கண்டு அதிர்ச்சி அடைந்து சத்

போலீசுக்கு தகவல் கொடுத்தனர். கோட்ட்க குப்பம் சப்-இன்ஸ்பெக் டர் முத்துக்குமார் தலை மையிலான போலீசார் குளக்கரைக்கு சென்று பார்த்தபோது அங்கு சரவ ணன் தண்ணீரில் மிதந்த நிலையில் இறந்து கிடந்தார். இதையடுத்து உடலை மீட்ட போலீசார் பிரேத பரிசோத னைக்காக கனகசெட்டிக் குப்பம் தனியார் மருத் துவமனைக்கு அனுப்பி வைத்தனர். வலிப்பு ஏற் பட்டு சரவணன் இறந்தது தெரியவந்தது. போலீசார் தொடர்ந்து விசாரணை நடத்தி வருகின்றனர்.

கொண்ட வருடங் ச இறந்து வி லையில்



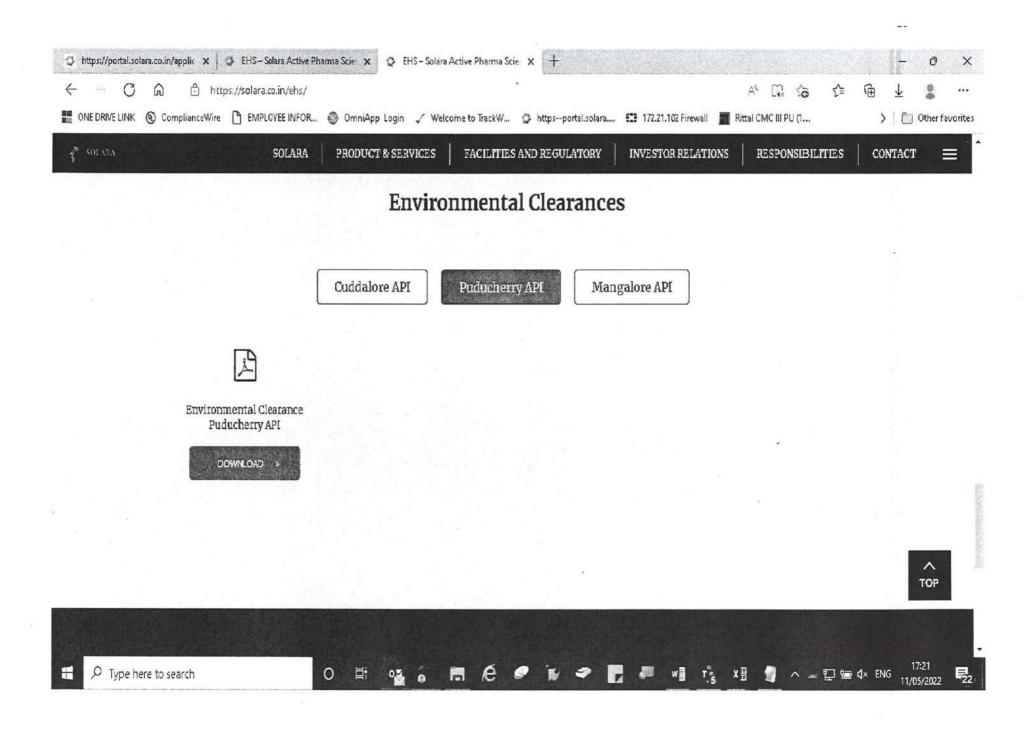
புதுச்சேரி காணிப்பு கனியமுழ டுள்ள செ புதுச் லம் துை யத்திலிரு மின் அழு சில பராட மேற்கொ

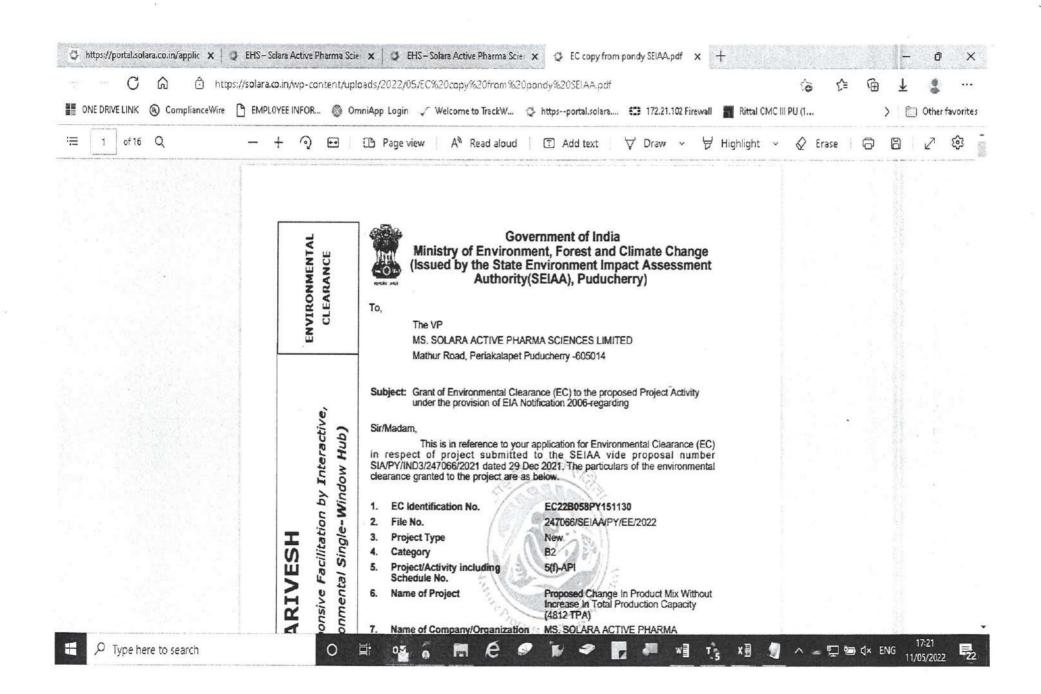
Printed and Published by, R.M.R.Ramesh on behalf of KAL Publications (F Editor: R.M.R.Ramesh R.N.I. Regn. No. PONTAM/2001/6021 Pl



# WHO ARE WE?

Solara Active Pharma Sciences is a young, dynamic, entrepreneurial and customer-oriented API manufacturer. We have a legacy of over three decades and trace our origins to the API expertise of Strides Shasun Ltd. and the technical know-how of human API business from Sequent Scientific Ltd.


We are poised to bridge the industry gap by delivering value-based products while maintaining focus on customer needs. We have 140+ scientists working at our two R&D Centers and 5 API manufacturing facilities armed with global approvals and 2 dedicated R&D facilities. We stand by our vision to Respect our partners by maintaining Integrity and operational Transparency, which we intend to achieve through developing utmost Efficiency across the organization.


冕

XI

0

**Di** 







Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34. Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2654100, Fax: +91 413 2655154

29/04/2022

To

The Director, Directrate of Industries and Commerce, Govt of Pudhucherry, Thattanchavady Puducherry -9

Dear Sir,

Sub: Grant of Environment clearance (EC) to the proposed activity under the provision of EIA Notification 2016 - Regarding

We are pleased to announce you that M/s Solara Active Pharma sciences limited got Environment clearance (EC) from SEIAA Puducherry, with reference Vide (1) we submitting the Environment clearance copy to your good office for reference. The particulars of the environmental Clearance granted are as below.

**EC** Identification File No Project type Category Project Name of the Company

EC22B058PY151130 247066/SEIAA/PY/EE/2022 New **B2** API Solara Active Pharma Sciences Limited

Reference

1. Copy of Environment Clearance - MoEF issued by State Environment Impact Assessment Authority (SEIAA), Puducherry EC Identification: EC22B058PY151130 date of issue EC . - 27/04/2022.

For Solara Active Pharma Science limited

Vice President (Operations)

RECEIVED. & DATE: 29/412

Directorate of Industries & Commerce Puducherry.

Solara Active Pharma Sciences Limited - CIN : L24230MH2017PLC291636 REGD. OFF : 201, Devavrata, Sector 17, Vashi Navi Mumbai - 400703. India / Tel : 91-22-2789 2924 / 2789 3199 / Fax: 91-22-2789 2942



Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34. Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2654100, Fax: +91 413 2655154

29/04/2022

То

The Commissioner, Oulgaret Municipality, Jawagar Nagar Boomiyanpet, Puducherry

DESPATCHER OULGARET MUNICIPALITY, JAWAHAP NAGAR, PUDUCHERRY-005 005

Dear Sir,

Sub: Grant of Environment clearance (EC) to the proposed activity under the provision of EIA Notification 2016 – Regarding

We are pleased to announce you that M/s Solara Active Pharma sciences limited got Environment clearance (EC) from SEIAA Puducherry, with reference Vide (1) we submitting the Environment clearance copy to your good office for reference. The particulars of the environmental Clearance granted are as below.

EC Identification File No Project type Category Project Name of the Company EC22B058PY151130 247066/SEIAA/PY/EE/2022 New B2 API Solara Active Pharma Sciences Limited

Reference

 Copy of Environment Clearance - MoEF issued by State Environment Impact Assessment Authority (SEIAA), Puducherry EC Identification: EC22B058PY151130 date of issue EC - 27/04/2022.

For Solara Active Pharma Science limited

M. Mohan Sr. Vice President (Operations)



Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2654100, Fax: +91 413 2655154 29/04/2022

To

Member Secretary Pudhucherry Pollution Control Committee, 3 rd Floor, PHB Building, Anna Nagar, Puducherry -605005.

Dear Sir,

Sub: Grant of Environment clearance (EC) to the proposed activity under the provision of EIA Notification 2016 – Regarding

We are pleased to announce you that M/s Solara Active Pharma sciences limited got Environment clearance (EC) from SEIAA Puducherry, with reference Vide (1) we submitting the Environment clearance copy to your good office for reference. The particulars of the environmental Clearance granted are as below.

EC Identification	EC22B058PY151130	
File No	247066/SEIAA/PY/EE/2022	
Project type	New	
Category	B2	
Project	API	
Name of the Company	Solara Active Pharma Sciences Limited	

Reference

 Copy of Environment Clearance - MoEF issued by State Environment Impact Assessment Authority (SEIAA), Puducherry EC Identification: EC22B058PY151130 date of issue EC - 27/04/2022.

For Solara Active Pharma Science limited

Sr. Vice-President (Operations)



Solara Active Pharma Sciences Limited - CIN : L24230MH2017PLC291636 REGD. OFF : 201, Devavrata, Sector 17, Vashi Navi Mumbai - 400703. India / Tel : 91-22-2789 2924 / 2789 3199 / Fax: 91-22-2789 2942

# Display Board Photograph





### Annexure - 28



Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2654100.

Date: 26.09.2023

То

The Member Secretary,

Puducherry Pollution Control Committee,

Puducherry -5

Respected sir,

Sub: Submission of Environment statement "FORM -V" for the year 2022 - 2023.

With reference to the mentioned Subject, here with we are submitting the Environment statement "Form – V" for the year of April-2022 to March 2023.

This is for your kind information and record please.

Thanking you,

For Solara active pharma sciences Limited.,

D. Krishnamoorthy Factory Manager



### FORM-V

### **ENVIRONMENTAL STATEMENT**

Environmental statement (for the financial Year ending with 31st March 2023)

1. Name and address of the owner/ Occupier of the industry Operation or process	Poorvank Purohit Managing Director & CEO Solara Active Pharma Sciences Limited, R.S. No. 33 & 34 Mathur Road, Periyakalapet, Puducherry-605 014, India.
ii. Industry category primary- (STC Code) Secondary- (STC Code)	RED
iii. Production category/Units	Pharmaceutical - API
iv. Year of establishment	1986
v. Date of the last environmental Statement Submitted	26.09.2022

#### PART-B

### 1. Water consumption in m3/day

.

Domestic	: 5 KL (Borewell)
	: 24 KL (STEW)
Industrial	: 105 KL (Borewell)
Total	: 110 KL (Borewell
	Sewage Treated Effluent water (STEW) purchased from PWD.
	Maximum quantity of 566 KLD as per CTO.

S.No	Name of products	Process water consumption per unit of products (KL)- During the previous year from April 2021 to March 2022.	Process water consumption per unit of products (KL)- During the current year from April 2022 to March 2023.
	Please Refer An	inexure - l	

'Name of raw materials*	Name of products	Raw material consumption per unit of output —During the previou: year from April-2021 to March -2022	Raw material consumption per unit of output – During the current year from April 2022 to March -2023
		Please Refer Annexure –	Ш

*Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw materials used.

#### PART-C

Pollution discharged to environment/unit of output.

### (Parameter as specified in the consent issued)

Pollutants	Quantity of pollutants discharged (mass/day)	Concentration of Pollutants discharged (mass/volume)	Percentage of variation from prescribed standards with reasons
Water	No water pollutants are discharged to the environment as the effluent generated is treated in the ZLD Plant & recycled within the unit.		
Air	APC Measures. (Cyclone separator, Bag Filter available)	Standard prescribed By PPCC.	Nil

### PART-D Hazardous Wastes

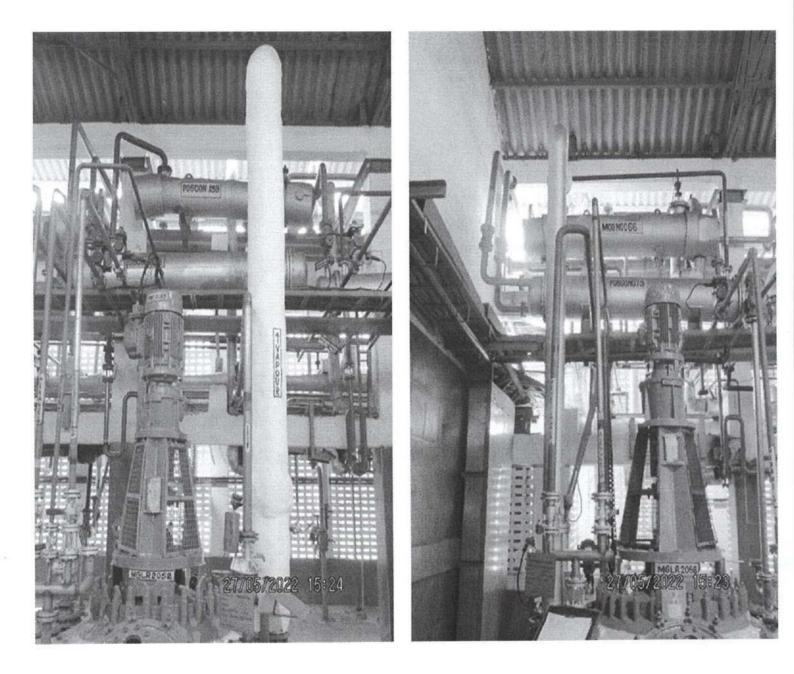
(As specified under Hazardous wastes (management & Handling Rules, 1989))

S.No.	Hazardous wastes	Total quantity During the current year from April- 2021 to March-2022 (MT)	Total quantity During the current year from April- 2022 to March-2023 (MT)
1	Waste Sodium Dichromate Solution	18452.52	20760.99
, 2	5.1. Spent lubricant oil	1.76	0.85
3	34.3 ETP Sludge	Nil	Nil
4	5.2. wastes /residues containing oil	Nil	0.72
5	20.2 Spent Solvents	706.62	898.28
6	20.3 Distillation Residues	43	48
7	28.1 Process Residues and Wastes	692.27	720
8	28.2 Spent catalyst/ Spent carbon	Nil	Nil
9	28.3 off specification products	0.207	Nil
10	28.4 Date Expired discarded and off specification drugs / Medicines	Nil	0.15
11	28.5/28.6 Spent Organic solvent	Nil	Nil
12	33.2 Sludge from treatment of wastewater arising out of cleaning / disposal of barrels / containers	Nil	Nil
13	33.3 Discarded containers/barrels/liners contaminate with HW/Chemicals	190.74	248.5
14	34.3 Chemical Sludge from wastewater Treatment	Nil	2.2
15	34.4 Oil and grease skimming residues	Nil	Nil
16	35.2 Spent Catalyst	Nil	Nil
17	35.3/28.3 Spent Carbon	16.6	53
18	35.3 chemical sludge from wastewater Treatment.	3958.59	3580.2

### PART-E Solids Wastes

S.No.	Solids wastes	Total quantity During the current year from April 2021 to March 2022 MT	Total quantity During the current year from April 2022 to March 2023 MT
1	From Process (Fly Ash)	610	624
2	From Pollution Control Facilities	Nil	3.0
3	Quantity recycled or reused within the unit.	Nil	Nil

### PART-F

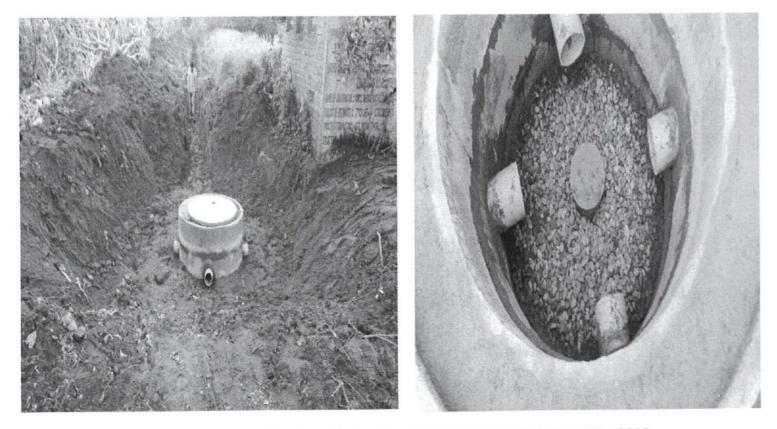

Please specify the characteristics (in terms of concentration and quantum) of Hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

Specification	Hazardous waste	Solid waste
Characteristics	<ol> <li>Process Wastes:</li> <li>Liquid / Tarry</li> <li>Residues.</li> <li>ETP Sludge:</li> <li>Solids/semi solids</li> </ol>	Fly Ash: Solids
Disposal	Process Residues: Stored in HDPE barrels over impervious platform. under closed shed. Disposal to Co- Processing industry and recycle. ETP Sludge: Chemical sludge from wastewater treatment category no 35.3 disposal to co-processing industry/TSDF. Bio Sludge - Generated from Bio clarifier and sent to Thickener and followed by centrifuge and finally will get the Bio sludge disposal to TSDF	Fly Ash: Sold As manure

### PART-G

Impact of the pollution control measures taken on conservation of natural resources and consequently on the cost of production:

• All solvents process reactors are connected to condensers to avoid organic vapour losses and exposure.




• Sapling were planted at "Ahad ka Amrit Mahotsav" for the 75th Independence Day celebration.






Tsunami quarters Rainwater Harvesting pit provided for community usage.

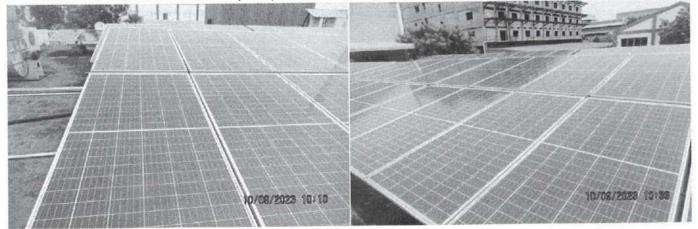


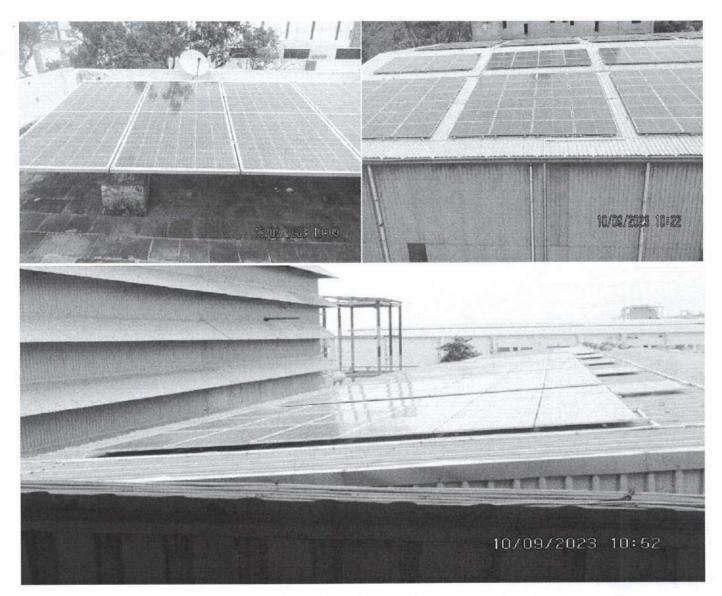
Management system, Re- certification obtained for ISO 14001 : 2015 & ISO 45001 : 2018

	SOLARA ACTIVE PHARMA SCIENCES LIMITED
	SOLARA
atio	R.S. NO. 33 & 34, MATHUR ROAD, PERIYAKALAPET, PUDUCHERRY - 605 014. INDIA.
Bureau Veritas <b>Certification</b>	Bureau Venitas Certification Holding SAS – UK Brench certifies that the Management System of the above organization has been audited and found to be in accordance with the requirements of the Management System Standards detailed below.
	Standards
e	ISO 14001:2015 & ISO 45001:2018
U U	, Scope of certification
10	, dauge of certification
itas	MANUFACTURE OF IBUPROFEN & ITS DERIVATIVES LIKE IBUPROFEN DC, IBUPROFEN LYSINE, (S+) IBUPROFEN AND IBUPROFEN SODIUM
eri	
2	
eau	
	Original cycle start date for ISO 14001: 29 April 2010
2	Original cycle start date for ISO 45001: 26 April 2019
	Recentification cycle start date 19 April 2022 Subject to the centinued satisfactory operation of the organization's Management System.
	this certificate expires on: 25 April 2025 Certificate No. IND.22.6740/IM/U Version: 1 Revision date: 19 April 2022
	Certexcale No IND.22.67401000 Version 1 Revision cale 19 April 2004
	ノール・/_ !思!
	Signed on behalf of BVCH SAS LIK Branch
	Jagdheesh N. MANIAN Mittelines Director - CERTIFICATION, South Asia Commonities, industry & Pacifices Division 0005
	Confession body See Rose of Research Sense Longen & Lander Registers
	Local alter 2 disclose Vector for all Provent Content (Development all antenn) 2 discloses Perin, New Processor Content Provent Processor Antenne - Content Provent Processor Antenne - Content Provent Processor Antenne - Content Provent ProventProvent Provent Provent Provent Provent Provent Proven
	Accessed 2000, characteristic - end once characteristic - end once characteristic - Purchara constructivities in approvement a value caracteristic - the approximativity of the create parents in specific - and the construction of the construction of the construction of Tar linear indication window (cleaners) = 3117 (Editor 2019)

Continuous online monitoring system (OCEMS) is connected to PPCC and CPCB.

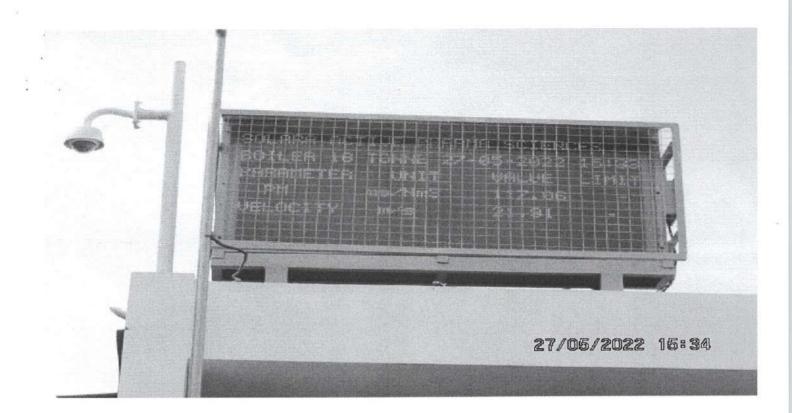



• The lights are changed with CFL to LED to reduce power consumption.




PART-H

# Additional measures / investment proposal for Environmental protection including abatement of pollution:


- 1. Sewage Treated Effluent Water (STEW) received from PWD and further treated in our ZLD-ETP system and reused to non-process operation.
- 2. Solar Power is installed in the Capacity of 360 KWP, All the Roof Sheet Solar Power Panel is Provided.





- 3. 1.8 MW Solar power enhancement plant planned, mutual agreement signed and copy of the agreement attached for your reference.
- 4. Hazardous waste details displayed in LED board 24*7 in front our industry.





5. We are in progress of Installing Sludge Rotary Dryer to minimize the sludge disposal quantity using Flue gas from the boiler.

Flue gas at 140 Deg from boiler is sent to drying section for drying purpose. Flue gas from Boiler is heated from 140 deg C to 160 Deg C in a thermic fluid heat exchanger. Sludge Feeding is done at controlled rate. The sludge material and hot air come in indirect contact with each other and drying takes place. The moisture removed from the product is carried away by the exhaust air. feed material comes into agitator which breaks the lumps and keeps the material in floating condition. As the material particle size reduces and is dried, becomes light and gets conveyed with exhaust air. The exhaust gases are then passed through cyclone. The product is separated and collected at the bottom. The exhaust gases are further passed through a ventury scrubber. Clean air is then exhausted to the atmosphere. The entire operation of the plant is controlled through an Automation operating panel.

Purchase order raised. Project proposal will be completed in another 10 months period tentatively.



### **Purchase Order**

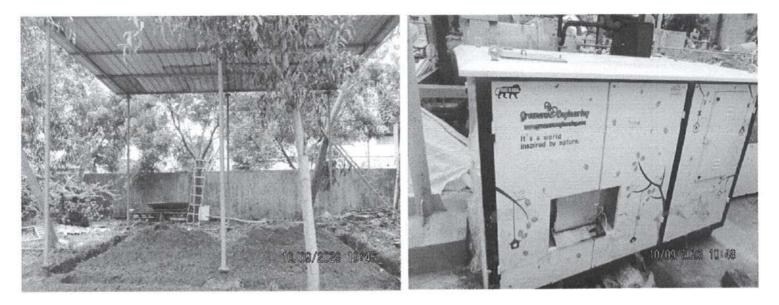
Senara Aut or Phanna Kaomon Emmed WO 200 De cacinas. Non Manihas 400763 Int Societ2 (2002)426 Em Nor422-(2002)64

MOJJ Genera PUNE 41102 GSTIN PAN : / Tel No Fax No Contact	: 27AABCM1797L1Z0 AABCM1797L : 9766640675	Provide the second second second	031009836)	PO Curre Amendme Amendme	nt No nt Date tation No.& D	: 550001384 : 30.05.2022 : INR : : ate :	-	
DOM: NO	k dalamen			-				
Billing Address Solara Active Pharma Sciences Limited					<mark>Address</mark> we Phanna Scie	and inside		
	ducherry			API Puduc		a, ca chunna		
	ancheny 1, 33 & 34 Mathur Read, Periakalapa	1				load,Perinkalapet		
Puchoch GSTIN PAN: 2 Tel No	eny 605814 eny-INDIA : 34AAYCS2093N1ZH :AYCS2093N :0413-2654100 :+91 4132855154			Puducheny 608014 Puducheny-INDIA. GSTIN : 34AAYCS2093N1ZH PAN : Tel No :0413-2654100 Fax No : +91 4132655154				
	pleased to place the order as per be							
Item N	a Item Details	Quantity UOM	Unit Rate ENR	Discount	Amount INR	Taxes INR	Total INR	
10	Thermic Fluid AIR HEATER     HSN/SAC:	1.600 EA	750,000,00	0.09	750,000.00	IGST:18% 135,000.00	88.5,000.00	
20	- DUCTING HOT AIR HSN/SAC:	1.000 LOT	630,000.00	0.00	630,000.00	IGST:18% 113,400.00	743,400,00	
30	AIR DISTRIBUTOR & Agitator assembly HSN/SAC:	1.000 E.A	1,350,000.0 0	0.(R)	1,350,000.00	IGST:18% 243,000.00	1,593,000.00	
40	<ul> <li>SPIN DECT HSN/SAC:</li> </ul>	1.000 LOT	9000000.00	0.00	900,000.00	IGST:18% 162,000.00	1,062,000.00	
50	- CYCLONE SEPARATOR HSN/SAC:	1,000 SET	1,800,000,0	0,00	1,800,000.00	IGST:18% 324,000.00	2,124,000.00	
					1	and many a more to be to be to be	and the second sec	
60	• ROTARY VALVE HSN/SAC:	1.000 EA	150,000.00	O.(N)	150,000.00	IGST:18% 27,000.00	177,000,00	
60 70			150,080.300 450,080,00		150,000.00 450,000.00	1GST:18% 27,000.00	177,000,90 531,000.00	
	HSN/SAC: - DUCTING ENTERCONNECTING & Powder	EA 1.000		0,00				
70	HSN/SAC: - DUCTING INTERCONNECTING & Powder HSN/SAC: - EXHAUST BLOWER WITH MOTOR	EA 1.000 LOT 1.000	450,000,00 1,125,000.0	0,00 0.00	450,000.00	1GST:18% 81,000.00	531,000.00	

# Purchase Order

Const. Retrice Printing Sciences Comments No. 201, Decisional Natio Maniford #46500 Tel 94-0022 25950254 Fair No.023 25962924

PO Number: 5500013842 PO Date: 30.05/2022


÷,

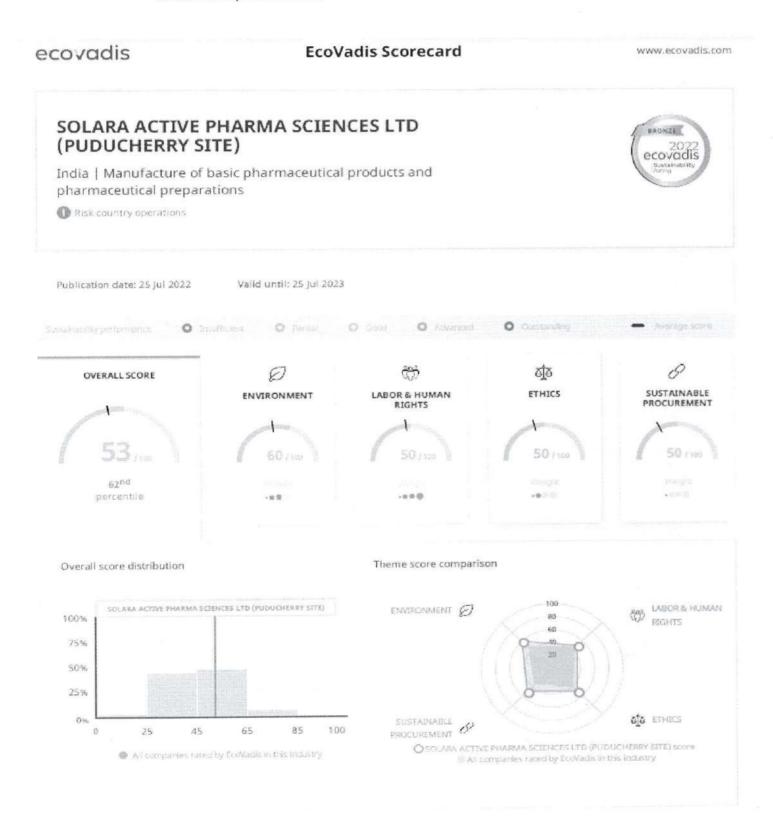
PO Version Number: PO Version Date:

	Item Details	Quantity UOM	Unit Rate INR	Discount	Amount INR	Taxes INR	Total INR				
110	- SCREW FEEDER HSN/SAC:	1.100 SET	735,600.00	0.00	735,000.00	IGST:18% 132,300.00	\$67,300.00				
120	- Control panel HSN/SAC:	1,000 SET	750.600.00	0.00	750,000.00	IGST:18% 135,080.00	885,800.00				
130	<ul> <li>Insulation and caldding HSN/SAC:</li> </ul>	1.000 LOT	450,000.00	0.00	450,000.00	(GST:18% 81,000.00	531,000.00				
140	<ul> <li>Cables and trays HSN/SAC:</li> </ul>	1.000 LOT	450,000.00	0.00	459,000.00	IGST:18% \$1,000.00	531,000.00				
Fotal				0.00	12,600,000.0 0	2,268,000.00	14,868,000.00				
					Fr	eight Charges	\$ <b>.</b> 10				
	Loading and Unloading charges										
	Clearing & Forwarding										
					St	orage Charges	0.04				
					In	surancé	0.0				
	Development Charges										
					0	thers	0.0				
Cond	Grand Total ONE CRORE FORTY EIGHT LAKH SIXTY EIGHT THOUSAND RUPEES ONLY										
Incoter	of Payment: See Remarks ms: ms Location:										
Remarl Material Payment 40% adu Balance inspectio	unce along with the order. against Proforma invoice prior m			es number and	manafacturer(s)						
Remarl Material Payment 40% ads Balance inspectic DELIVI The defi Delivery Delivery	Should Be Supplied as per the (terms: ance along with the order, against Proforma invoice prior in IRY SCHEDULE: veries shall be with part shipmi starts on Ex works basis : 16 V ending on Ex works basis : 18	to despatch but ent. Weeks Weeks		es number and	reanafacturer(s)						
Remarl Material Payment 40% adu Balance inspectic DELIVI The delir Delivery Installati Commis Total du	Should Be Supplied as per the terms: ance along with the order, against Proforma invoice prior on IRY SCHEDULE: veries shall be with part shipme starts on Ex works basis : 16 V	to despatch bat ent. Weeks (Weeks inated) uplete before: 22	after final Weeks (Estia	mated)	reanafacturer(s)						

x

. 6. We procured Organic waste convertor for handling our canteen waste and Garden wastes generated at our premises. Equipment landed at site, erection, and commissioning work under progress.




**PART-I** 

Any other particulars in respect of environmental protection and abatement of pollution.

- 2 x 16 TPH boiler's bag filters changed to control the particulate matter emissions.
- In house LDAR study conducted by every three months to reduce VOC emission.
- Creating awareness of Environmental awareness and better environmental practices among employees, Visitors, and students through trainings, Etc.
- Life-cycle assessment (LCA) is a tool for measuring the environmental impacts associated with all stages of a product's life cycle, from raw material extraction to production, use, and disposal. It combines quantitative data from different sources to identify and assess the potential environmental effects of various activities. The main purpose of LCA is to enable businesses to reduce their environmental impact and improve their sustainability performance. We done LCA study for Ibuprofen following the International Standards Organisation (ISO) 14040 and 14044, which promote environmental management through life-cycle assessment (LCA).
- Limiting the presence of pharmaceuticals in the environment is an environmental priority for Solara. Typically, a fraction of the product manufactured is naturally excreted and may enter waterways or in air, following the treatment by a wastewater treatment plant. To a lesser extent, pharmaceuticals can enter the environment through improper disposal of product and from manufacturing wastewater discharges. We are committed to responsibly managing wastewater recycling in our site and assessing discharges from site to assure that the research, development, manufacture, use and disposal of our product does not adversely affect human health or the environment. Pharmaceuticals in

Environment (PiE) analysis study conducted for our ibuprofen product on all emissions and water recycle points states no remnants of ibuprofen found in environment.

 EcoVadis is a globally recognized assessment platform that rates businesses' sustainability based on four key categories: environmental impact, labour, and human rights standards, ethics, and procurement sustainability practices. Our Puducherry site awarded Bronze medal on EcoVadis, with 53 percentile ESG score complies the performance on several themes, considering Environment, human rights, ethics, and sustainable procurement.



## Annexure I

YEAR	YEAR April 2021-March 2022		3534	
S. No	Raw Material Name	Total Raw Water Consumption in MT	Raw water Consumption /Mt of Product	
1	Ibuprofen & Ibu derivatives	35361	10	

YEAR	YEAR April 2022-March 2023		4154
S. No	Raw Material Name	Total Raw Water Consumption in MT	Raw water Consumption /Mt of Product
1	Ibuprofen & Ibu derivatives	35770	8.61

Annexure II

		PRODUCTION: IBUPROFEN		
YEAR	April 2021-March 2022	Production in MTA	3534 MT	
S.No	Raw Material Name	Total Raw Material Consumption in MT	Raw Material Consumption /Mt of Product	
1	Acetone	5287.61	1.5	
2	Activated Carbon	17.13	0.005	
3	Aldehyde	4283.64	1.21	
4	Dilute Sulphuric Acid	10976.82	3.11	
5	Hexane	6620.9	1.87	
6	Hydrochloric Acid	803.18	0.23	
7	IBAP	2744.2	0.78	
8	Isopropyl Alcohol (IPA)	12861.62	3.64	
9	Mono Chloro Acetate (MCA)	6015.15	1.7	
10	Sodium Bicarbonate	1137.84	0.32	
11	Sodium Dichromate	2583.57	57 0.73	
12	Sodium Hydroxide	1606.36	0.45	
13	Sodium Metal	508.68	0.14	
14	Sulphuric Acid	1070.91	0.3	

	RA	W MATERIAL CONSUMPTION		
	Ibu Derivative	es (Ibu DC, Lysine, Sodium, S+ Ib	ouprofen)	
YEAR April 2021-March 2022		Production in MTA	355.20 MT	
S.No	Raw Material Name	Total Raw Material Consumption in MT	Raw Material Consumption /Mt of Product	
1	Ibuprofen	1114.74	3.13	
2	Isopropyl Alcohol (IPA)	5447.05	15.33	
3	Toluene	1672.117	4.7	
4	Sodium Hydroxide	38	0.1	
5	DL. Lysine	228.02	0.64	
6	Hexane	1249.02	3.51	
7	Hydrochloric Acid	443.37	1.24	
8	Methanol	212.81	0.59	
9	SPBA	293.89	0.82	

**RAW MATERIAL CONSUMPTION PRODUCTION: IBUPROFEN** 4154 MT YEAR April 2022 - March 2023 Production in MTA **Raw Material Consumption** Total Raw Material S. No **Raw Material Name** /Mt of Product **Consumption in MT** 1.50 1 Acetone 6216.25 20.1438 0.00 2 **Activated Carbon** 5035.949 1.21 Aldehyde 3 3.11 4 **Dilute Sulphuric Acid** 12904.62 1.87 7783.68 5 Hexane 0.23 Hydrochloric Acid 944.2405 6 0.78 7 IBAP 3226.155 5237.387 1.26 Isopropyl Alcohol (IPA) 8 Mono Chloro Acetate 1.89 7868.67 9 (MCA) Sodium Bicarbonate 1337.674 0.32 10 0.73 3037.307 11 Sodium Dichromate 1888.481 0.45 12 Sodium Hydroxide 0.14 598.019 13 Sodium Metal 0.30 1258.987 14 Sulphuric Acid

	RA	W MATERIAL CONSUMPTION	
	Ibu Derivative	es (Ibu DC, Lysine, Sodium, S+ Ib	ouprofen)
YEAR	April 2022 - March 2023	Production in MTA	612 MT
S. No	Raw Material Name	Total Raw Material Consumption in MT	Raw Material Consumption /Mt of Product
1	Ibuprofen	1915.56	3.13
2	Isopropyl Alcohol (IPA)	6933.96	11.33
3	Toluene	2876.4	4.7
4	Sodium Hydroxide	61.2	0.1
5	DL. Lysine	391.68	0.64
6	Hexane	2148.12	3.51
7	Hydrochloric Acid	758.88	1.24
8	Methanol	361.08	0.59
9	SPBA	501.84	0.82

Annexure II



## VOC sensors Photograph







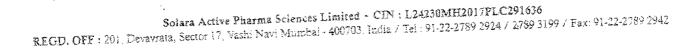




#### Annexure - 32 Communication Address Solara Active Pharma Sciences Limited R.S.No. 33 & 34. Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2654100, Fax: +91 413 2655154

Date :28.10.2020

The Member Secretary, Puducherry Pollution Control Committee, Government of Puducherry – 5


- Sub: Updating of Hazardous waste category number as per rule 2015 MOEF notification dated 04.04.2016 and Renewal of Hazardous Waste Authorization and Name change to M/s Solara Active pharma sciences Ltd.
- Ref: Our Hazardous waste authorization No: 4/PPCC/HWM/JSA/2016/384 dated 30.06.2016 and renewal Expired on 30.11.2020.

With reference to the above subject, we bring to your good self that we got authorization from PPCC, Puducherry for collection, Storage, transport and disposal of hazardous waste as per rule 2008 as above said reference dated 30.06.2016 .Our Hazardous waste Authorization is validity period up to 30.11.2020 and renewal online application submitted on 27.10.2020.

Whereas the rules, namely Hazardous and other wastes (Management and Transboundary Movement) Rules, 2015, were published by the Government of India in the Ministry of Environment, Forest and Climate Change notification dated 04.04.2016.

As per new Hazardous waste rule the categorization of hazardous waste number were changed, hence we need to update the hazardous waste category number.

Following are the Existing authorization quantity of waste approved by PPCC as per hazardous waste rule amended.







Communication Address . Solara Active Pharma Sciences Limited R.S.No. 33 & 34. Mathur Road. Periyakalapet Puducherry - 605 014. India Tel: +91 413 2655154

Kindly renew our Hazardous waste Authorization for 5 Five Years.

Thanking you,

Yours faithfully,

For Solara Active Pharma Sciences Limited,

10/2020

P.Sathiyanarayanan General Manager

Enclosed:1. The copy of H.W authorization 2.The copy of vendor Agreement 3.The original D.D 4.The copy of Online Application

Solara Active Pharma Sciences Limited • CIN : L24230MH2017PLC291636 REGD. OFF : 201, Devavrata, Sector 17, Vashi Navi Mumbai • 400703. India / Tel : 91-22-2789 2924 / 2789 3199 / Fax: 91-22-2789 2942

7 a       Location address of TSDF site         ii)       Safe storage of the waste and storage capacity         iii)       The treatment processes and their capacities         iv)       Secured Landfills         y       Incineration, if any         vi)       Leachate Collection and Treatment System         viii)       Environmental management plan including monitoring         ix)       Arrangement for transportation of waste from         Generators       Arrangement for transportation of waste from         b)       Any other activities undertaken at the Treatment, storage and disposal facility site         c)       Layout map of the TSDF         ATTACHED       ATTACHED         PART-D. Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No         8 i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         iii)       Installed capacity as per registration issued by the ATTACHED         d)       Covernment agency       Source(Domestic/Importe d)         iii)       Installed capacity as per registration issued by the ATTACHED         d)       Process description including process flow sheet attherated, emissions, waste water, etc.)         vi)       Prediate of secured storage of wastes including the storage capacity waster, schemicals, products, waste generated, emissions	[]	ART – C : Treatment, S ISDF) Operators	torage and Disposal Fa	acility	Not Applicable	
iii)       The treatment processes and their capacities         iv)       Secured Landfills         v)       Incineration, if any         vi)       Leachate Collection and Treatment System         viii)       Environmental management plan including monitoring         ix)       Arrangement for transportation of waste from         Generators       Any other activities undertaken at the Treatment, storage and disposal facility site         e)       Layout map of the TSDF       ATTACHED         d)       Copy of prior Environmental Clearance       ATTACHED         PART-D :Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No       81)         81)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         Hazardous & Other       Passbook Type       Quantity       Source(Domestic/Importe d)         iii)       Installed capacity as per registration issued by the District Industries Centre or any other authorised       ATTACHED         iii)       Details of secured storage of wastes including the storage capacity       ivstorage capacity         iv)       Process description including process flow sheet indicating equipment details, inputs and outputs (input wastes, chemicals, products, by-products, waste generated, emissions, waste water, etc.)         v)       Details of pollution control systems such as Effluent Treatment Plant,		a. Location address of TSJ	DF site			
iii)       The treatment processes and their capacities         iv)       Secured Landfills         vi)       Incineration, if any         vi)       Leachate Collection and Treatment System         viii)       Environmental management plan including monitoring         viii)       Arrangement for transportation of waste from         Generators       Any other activities undertaken at the Treatment, storage and disposal facility site         c)       Layout map of the TSDF         d)       Copy of prior Environmental Clearance         PART-D. Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No         8 i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         iii)       Installed capacity as per registration issued by the District Industries Centre or any other authorised Government agency         iiii)       Details of secured storage of wastes including the storage capacity, waste storage of wastes including the storage capacity, waste water, etc.)         viv)       Details of end users of products, by-products, waste generated, emissions, waste water, etc.)         vi)       Details of coupational health and safety measures         viii)       Details of occupational health and safety measures         viii)       Details of secured lenes? If yes, provide a report on the compliance with the guidelines?	i	i) Safe storage of the wast	e and storage capacity			
iv)       Secured Landfills         v)       Incineration, if any         vii)       Eachate Collection and Treatment System         viii)       Fire Fighing Systems         viii)       Environmental management plan including monitoring         ix)       Arrangement for transportation of waste from         Generators       Generators         b)       Any other activities undertaken at the Treatment, storage and disposal facility site         c)       Layout map of the TSDF         ATTACHED       ATTACHED         PART-D: Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No         8 i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         iii)       Installed capacity as per registration issued by the District Industries Centre or any other authorised Government agency         iii)       Details of secured storage of wastes including the storage capacity         iv)       Process description including process flow sheet ATTACHED         viii)       Details of end users of products or by-products, waste generated, emissions, waste water, etc.)         v)       Details of ford users of products or by-products         vi)       Details of occupational health and safety measures         viii)       Details of occupational health and safety measures <td< td=""><td>ii</td><td></td><td></td><td></td><td></td><td></td></td<>	ii					
vi)       Leachate Collection and Treatment System         vii)       Fire Fighting Systems         viii)       Environmental management plan including monitoring         ix)       Arrangement for transportation of waste from Generators         b)       Any other activities undertaken at the Treatment, storage and disposal facility site         c)       Layout map of the TSDF         d)       Copy of prior Environmental Clearance         PART-D: Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No         8i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         Hazardous & Other Wastes Type       Quantity       Source(Domestic/Importe d)         iii)       Installed capacity as per registration issued by the District Industries Centre or any other authorised Government agency       ATTACHED         iii)       Details of secured storage of wastes including the storage capacity       ATTACHED         iv)       Process description including process flow sheet indicating equipment details, inputs and outputs (input wastes, chemicals, products, by-products, waste generated, emissions, waste water, etc.)       ATTACHED         v)       Details of nolusion control systems such as Effluent Treatment Plant, scrubbers, etc. including mode of disposal of waste       Treatment Plant, scrubbers, etc. including mode of disposal of waste         vii)       Details of occupational hea	iv					······································
vii)       Fire Fighting Systems         viii)       Environmental management plan including monitoring         ix)       Arrangement for transportation of waste from Generators         .b)       Any other activities undertaken at the Treatment, storage and disposal facility site         c)       Layout map of the TSDF       ATTACHED         d)       Copy of prior Environmental Clearance       ATTACHED         PART-D: Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No       8 i)         8 i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         Hazardous & Other       Passbook Type       Quantity         Source(Domestic/Importe di)       Installed capacity as per registration issued by the District Industries Centre or any other authorised       ATTACHED         iii)       Installed capacity as per registration issued by the Storage capacity       ATTACHED         iiii)       Details of secured storage of wastes including the storage capacity       ATTACHED         viv       Process description including process flow sheet indicating equipment details, inputs and outputs (input wastes, chemicals, products, by-products, waste generated, emissions, waste water, etc.)       ATTACHED         v)       Details of end users of products or by-products       Viv         viv       Details of ocupational health and safety measures       <	v	) Incineration, if any				······································
vii)       Fire Fighting Systems         viii)       Environmental management plan including monitoring         ix)       Arrangement for transportation of waste from Generators         .b)       Any other activities undertaken at the Treatment, storage and disposal facility site         c)       Layout map of the TSDF       ATTACHED         d)       Copy of prior Environmental Clearance       ATTACHED         PART-D: Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No       8 i)         8 i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         Hazardous & Other       Passbook Type       Quantity         Source(Domestic/Importe di)       Installed capacity as per registration issued by the District Industries Centre or any other authorised       ATTACHED         iii)       Installed capacity as per registration issued by the Storage capacity       ATTACHED         iiii)       Details of secured storage of wastes including the storage capacity       ATTACHED         viv       Process description including process flow sheet indicating equipment details, inputs and outputs (input wastes, chemicals, products, by-products, waste generated, emissions, waste water, etc.)       ATTACHED         v)       Details of end users of products or by-products       Viv         viv       Details of ocupational health and safety measures       <	vi	i) Leachate Collection and	Treatment System		· · · · · · · · · · · · · · · · · · ·	
int       Arrangement for transportation of waste from Generators         (b)       Any other activities undertaken at the Treatment, storage and disposal facility site         (c)       Layout map of the TSDF         (d)       Copy of prior Environmental Clearance         PART-D :Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No         8 i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         Image: transport of the transport of transport of transport of transport of the transport of the transport of transpor	vi					
int       Arrangement for transportation of waste from Generators         (b)       Any other activities undertaken at the Treatment, storage and disposal facility site         (c)       Layout map of the TSDF         (d)       Copy of prior Environmental Clearance         PART-D :Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No         8 i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         Image: transport of the transport of transport of transport of transport of the transport of the transport of transpor	vii	i) Environmental managem	ent plan including monito	ring	· · · · · · · · · · · · · · · · · · ·	
storage and disposal facility site         c) Layout map of the TSDF       ATTACHED         d) Copy of prior Environmental Clearance       ATTACHED         PART-D: Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No       8         8 i) Nature and quantity of different wastes received per annum from domestic sources or imported or both:       Image: Content of the content of	ix	() Arrangement for transportation of wasta from				
d)       Copy of prior Environmental Clearance       ATTACHED         PART-D: Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No       8         8 i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         Image: Hazardous & Other Wastes Type       Quantity       Source(Domestic/Importe d)         Image: Wastes Type       Passbook Type       Quantity       Source(Domestic/Importe d)         ii)       Installed capacity as per registration issued by the District Industries Centre or any other authorised Government agency       ATTACHED         iii)       Details of secured storage of wastes including the storage capacity       ATTACHED         iv)       Process description including process flow sheet indicating equipment details, inputs and outputs (input wastes, chemicals, products, by-products, waste generated, emissions, waste water, etc.)       ATTACHED         v)       Details of pollution control systems such as Effluent Treatment Plant, scrubbers, etc. including mode of disposal of waste       viii)         viii)       Details of occupational health and safety measures       viii)         viii)       Has the facility been set up as per Central Pollution Control Board guidelines? If yes, provide a report on the compliance with the guidelines	. b)	Any other activities undertaken at the Treatmen storage and disposal facility site			······	
d)       Copy of prior Environmental Clearance       ATTACHED         PART-D :Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No       8 i)         8 i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         Image: the star of t	<u>c)</u>				ATTACHED	······
PART-D :Recyclers/Pre-processors/Co-processors/Users of hazardous or other wastes : No         8 i)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         Hazardous & Other Wastes Type       Passbook Type       Quantity       Source(Domestic/Imported)         ii)       Installed capacity as per registration issued by the District Industries Centre or any other authorised Government agency       ATTACHED         iii)       Details of secured storage of wastes including the storage capacity       ATTACHED         iv)       Process description including process flow sheet indicating equipment details, inputs and outputs (input wastes, chemicals, products, by-products, waste generated, emissions, waste water, etc.)       ATTACHED         v)       Details of pollution control systems such as Effluent Treatment Plant, scrubbers, etc. including mode of disposal of waste       viii) Details of occupational health and safety measures         viii)       Has the facility been set up as per Central Pollution Control Board guidelines? If yes, provide a report on the compliance with the guidelines       Portestage and publicion control systems are port on the compliance with the guidelines	· · · · · · ·		ntal Clearance		ATTACHED	
81)       Nature and quantity of different wastes received per annum from domestic sources or imported or both:         Hazardous & Other Wastes Type       Quantity       Source(Domestic/Importe d)         iii)       Installed capacity as per registration issued by the District Industries Centre or any other authorised Government agency       ATTACHED         iii)       Details of secured storage of wastes including the storage capacity       ATTACHED         iv)       Process description including process flow sheet indicating equipment details, inputs and outputs (input wastes, chemicals, products, by-products, waste generated, emissions, waste water, etc.)       ATTACHED         v)       Details of pollution control systems such as Effluent Treatment Plant, scrubbers, etc. including mode of disposal of waste       vii)         vii)       Details of occupational health and safety measures       per Central Pollution control Board guidelines? If yes, provide a report on the compliance with the guidelines?	PA	RT-D :Recyclers/Pre-proces	ssors/Co-processors/Users	ofha	zardous or other w	astes : No
Wastes Type       Value of the procession of the procession of the process of the proc	8 i)	Nature and quantity of d both:	ifferent wastes received p	der an	num from domest	ic sources or imported or
<ul> <li>ii) Installed capacity as per registration issued by the District Industries Centre or any other authorised Government agency</li> <li>iii) Details of secured storage of wastes including the storage capacity</li> <li>iv) Process description including process flow sheet indicating equipment details, inputs and outputs (input wastes, chemicals, products, by-products, waste generated, emissions, waste water, etc.)</li> <li>v) Details of end users of products or by-products</li> <li>vi) Details of pollution control systems such as Effluent Treatment Plant, scrubbers, etc. including mode of disposal of waste</li> <li>vii) Details of occupational health and safety measures</li> <li>viii) Has the facility been set up as per Central Pollution Control Board guidelines? If yes, provide a report on the compliance with the guidelines</li> </ul>		Hazardous & Other Wastes Type	Passbook Type		Quantity	
storage capacity         iv)       Process description including process flow sheet indicating equipment details, inputs and outputs (input wastes, chemicals, products, by-products, waste generated, emissions, waste water, etc.)       ATTACHED         v)       Details of end users of products or by-products       vi)         Details of pollution control systems such as Effluent Treatment Plant, scrubbers, etc. including mode of disposal of waste       vii)         vii)       Details of occupational health and safety measures       viii)         Has the facility been set up as per Central Pollution Control Board guidelines? If yes, provide a report on the compliance with the guidelines       Pollution	ii)	District Industries Centre or any other authorized			ATTACHED	
<ul> <li>wastes, chemicals, products, by-products, waste generated, emissions, waste water, etc.)</li> <li>v). Details of end users of products or by-products</li> <li>vi) Details of pollution control systems such as Effluent Treatment Plant, scrubbers, etc. including mode of disposal of waste</li> <li>vii) Details of occupational health and safety measures</li> <li>viii) Has the facility been set up as per Central Pollution Control Board guidelines? If yes, provide a report on the compliance with the guidelines</li> </ul>	iii)	Details of secured stora storage capacity	ige of wastes including	the	······································	
v). Details of end users of products or by-products         vi) Details of pollution control systems such as Effluent Treatment Plant, scrubbers, etc. including mode of disposal of waste         vii) Details of occupational health and safety measures         viii) Has the facility been set up as per Central Pollution Control Board guidelines? If yes, provide a report on the compliance with the guidelines	iv)	wastes, chemicals, products by products waste			ATTACHED	
<ul> <li>vi) Details of pollution control systems such as Effluent Treatment Plant, scrubbers, etc. including mode of disposal of waste</li> <li>vii) Details of occupational health and safety measures</li> <li>viii) Has the facility been set up as per Central Pollution Control Board guidelines? If yes, provide a report on the compliance with the guidelines</li> </ul>	<u>v)</u> .					
viii) Has the facility been set up as per Central Pollution Control Board guidelines? If yes, provide a report on the compliance with the guidelines	vi)	Details of pollution control systems such as Effluent Treatment Plant, scrubbers, etc. including mode of		ent of		
viii) Has the facility been set up as per Central Pollution Control Board guidelines? If yes, provide a report on the compliance with the guidelines	vii)	Details of occupational health and safety measures			······································	
1x) Arrangements for transportation of waste to the facility	viii)	) Has the facility been set up as per Central Pollution Control Board guidelines? If yes, provide a report on the compliance with the guidelines			n,	
						· · · · · · · · · · · · · · · · · · ·

Place: PUDUCHERRY Date: 30/10/2020

<u>ا</u>با

1.50

Harayana Signature of the Applicant Name and Designation

P. SATHITANARAYANA GENGRAL MANAGER

6

## Annexure - 33



Communication Address . Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014, India Tel: +91 413 2654100.

06.09.2023

To

The Member Secretary, Pondicherry Pollution Control Committee, Puducherry-605 005

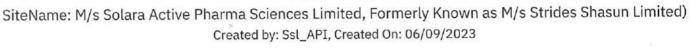
Respected Sir, Sub: Submission Of Online Monitoring Report - Reg.

Please find the enclosed copy of Online Monitoring Report for the month of August-2023.

Please acknowledge the same

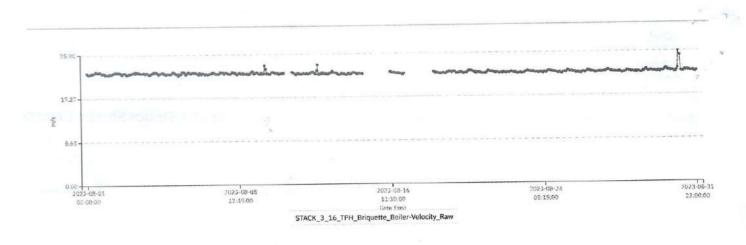
Thanking you,

Yours faithfully, For Solara active pharma sciences Limited.,


Chief Operations Officer



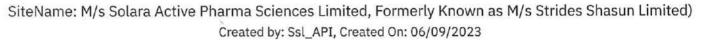


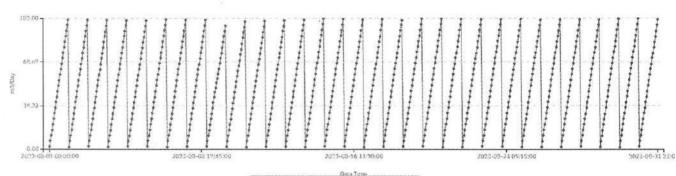

### Created by: Ssl_API, Created On: 06/09/2023 117.31 78.2 Find/Brit 39.15 0.0 00 2023-08-05 (0:00:09 2023-03-24 2023-08-31 2023-08-16 2023-08-08 11:30:00 Data Lone STACK_3_16_TPH_Briquette_Boiler-PM_Raw 45.75 30. Enth/Shis 2023-08-31 2023-08-16 11:30:00 2013-08-24 05:15:00 2633-08-06 00:05:06 23 00:00 147.5 STACK_3_16_TPH_Briquette_Boiler-SOx_Raw 11.92 2.9 ក្រការខ្មាំ៣ 3.9 0.00 2023-08-01 00:00:00 2023-08-31 23.00k00 2023-08-08 37:45-00 2023-03-24 05:15.00 2023-08-16 11:30:00 Onte Time STACK_3_16_TPH_Briquette_Boiler-NOx_Raw 12.61 8.22 Entrigen 4.36 metricon 2025-08-31 23-00:60 2023-08-16 2023-08-08 2023-08-24 05:15:00 Date Time STACK_3_16_TPH_Briquette_Boiler-CO_Raw

#### **Custom Report**



nf 7


06 00 2023 10-4

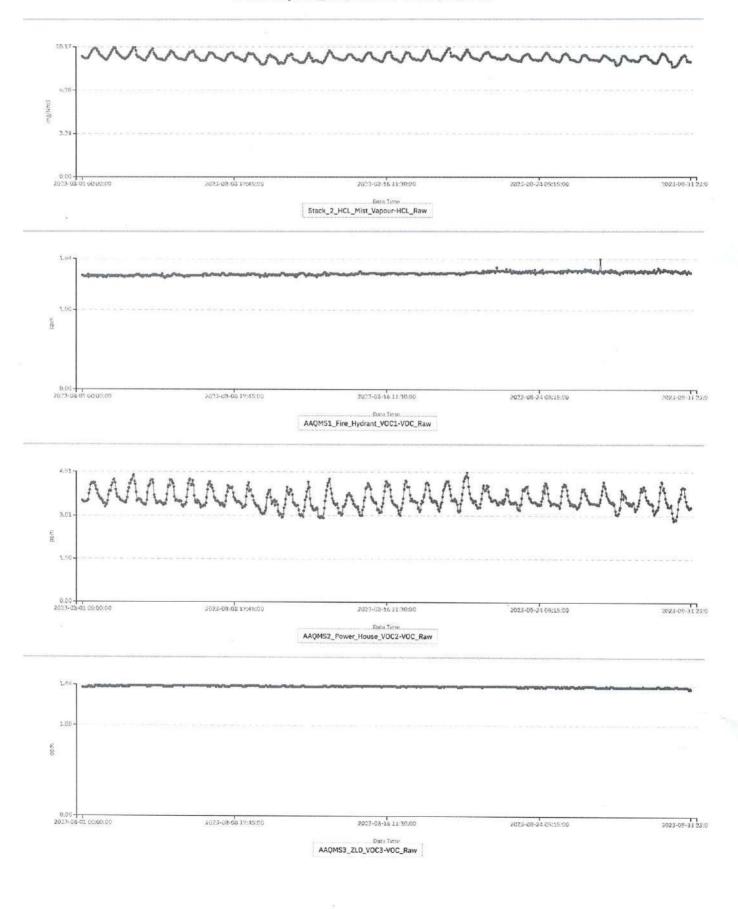



See.

YOKOGAWA Voicogawa India Ltd. nttps://yiicioua.yiire

## **Custom Report**






Data Tiras GW_1_BOREWELL_Inlet_flow-Totalizer Flow_Raw

YOKOGAWA Vologawa inda Lida

#### **Custom Report**

## SiteName: M/s Solara Active Pharma Sciences Limited, Formerly Known as M/s Strides Shasun Limited) Created by: Ssl_API, Created On: 06/09/2023



AF AA 2022 10-4



Communication Address : Solara Active Pharma Sciences Limited Batra Centre No. 28, Sardar Patel Road, Post Box 2630 Guindy, Chennai - 600 032, India Tel : +91 44 43446700, 22207500 Fax : +91 44 22350278 E-mail : info@solara.com www.solara.co.in

07.08.2023

То

The Member Secretary, Pondicherry Pollution Control Committee, Puducherry- 605 005

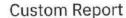
Respected Sir, Sub: Submission Of Online Monitoring Report - Reg.

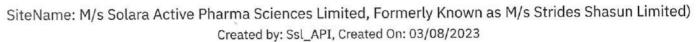
Please find the enclosed copy of Online Monitoring Report for the month of July-2023.

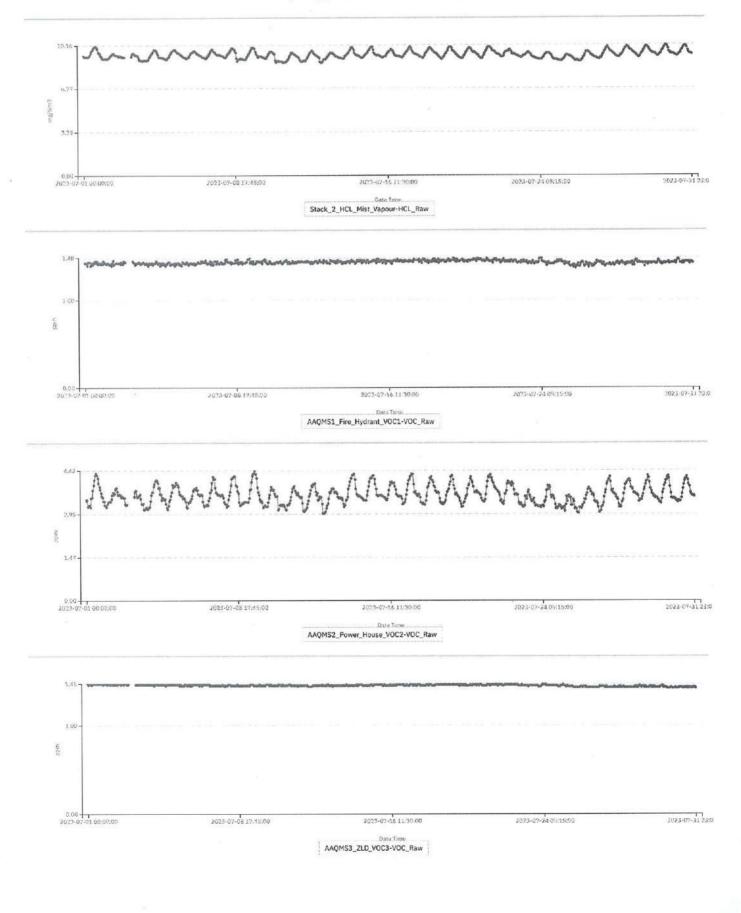
Please acknowledge the same

Thanking you,

Yours faithfully, For Solara active pharma sciences Limited.,


Chief Operations Officer





YOKOGAWA Wegawa Inde Ltd

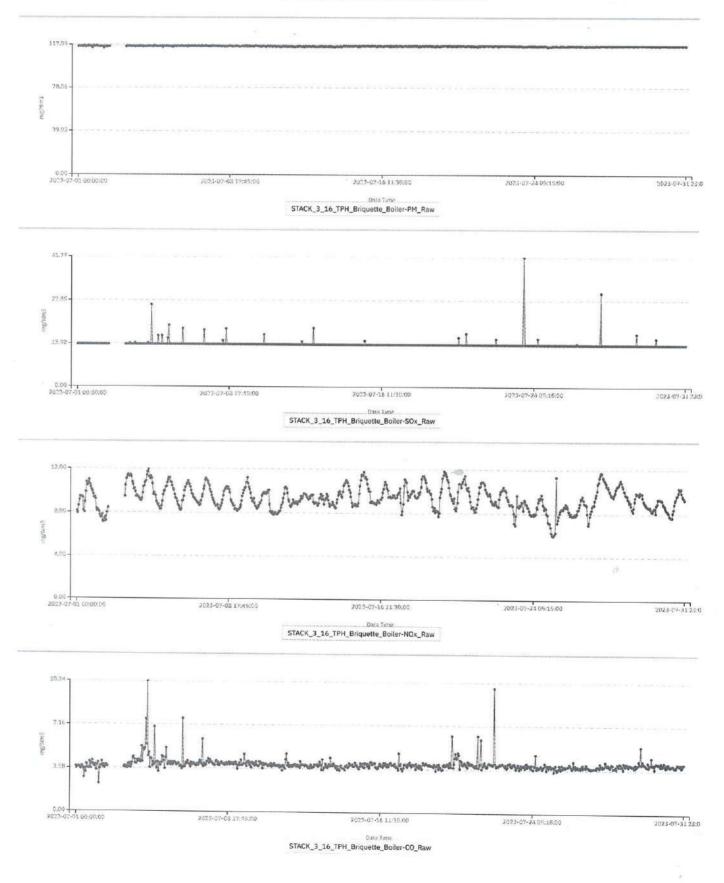
meiox

of 1

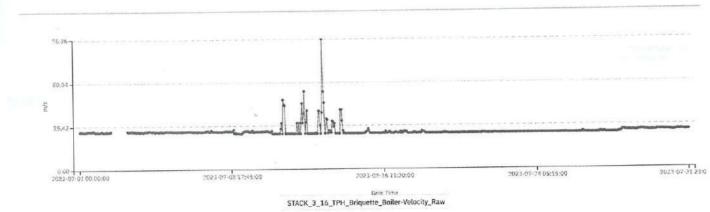







13 10 2022 12.



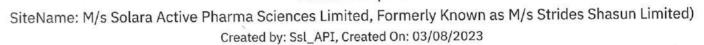

of 7

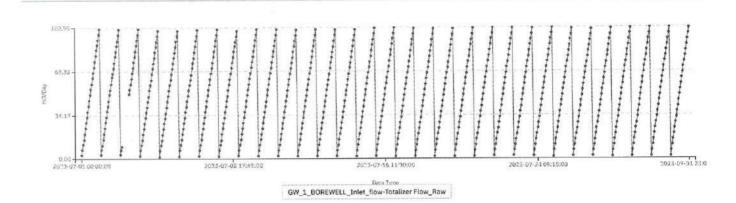
## **Custom Report**

## SiteName: M/s Solara Active Pharma Sciences Limited, Formerly Known as M/s Strides Shasun Limited) Created by: Ssl_API, Created On: 03/08/2023



11 200 201 20 EU





IFCIUS

nups://yucioua.yurc.ne

YOKOGAWA Yokogawe Inde Ltd.

## **Custom Report**





49

of 1

Nº NO 2022 12.5



Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014, India Tel: +91 413 2654100.

06.07.2023

То

The Member Secretary, Pondicherry Pollution Control Committee,

Puducherry-605 005

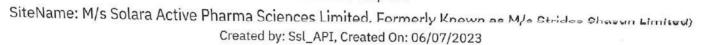
Respected Sir, Sub: Submission Of Online Monitoring Report – Reg.

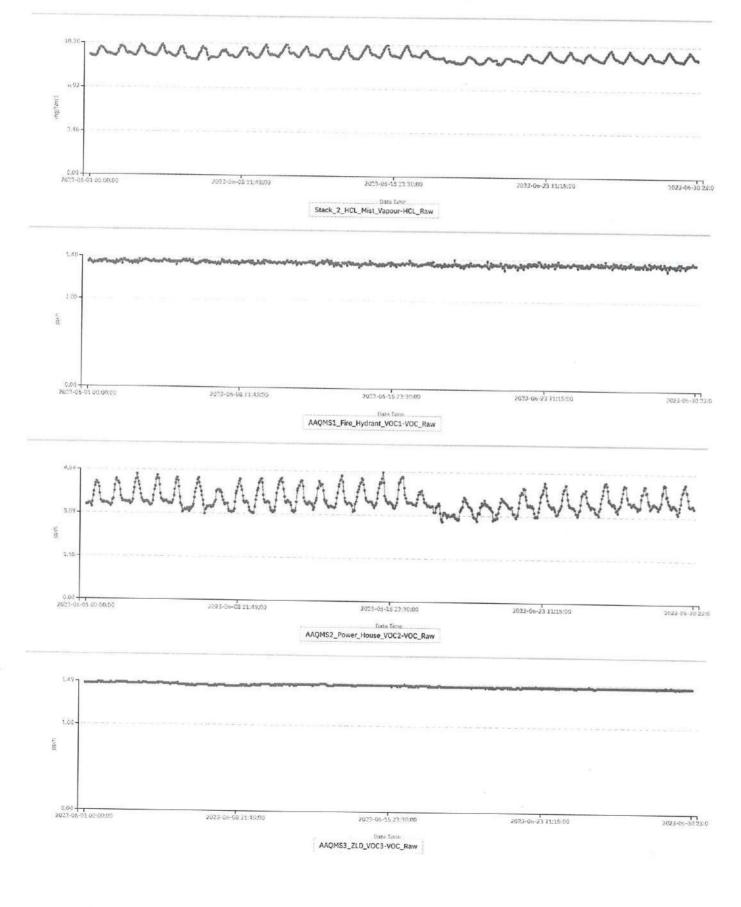
Please find the enclosed copy of Online Monitoring Report for the month of June-2023.

Please acknowledge the same

Thanking you,

Yours faithfully, For Solara active pharma sciences Limited.,


Chief Operations Officer




merox

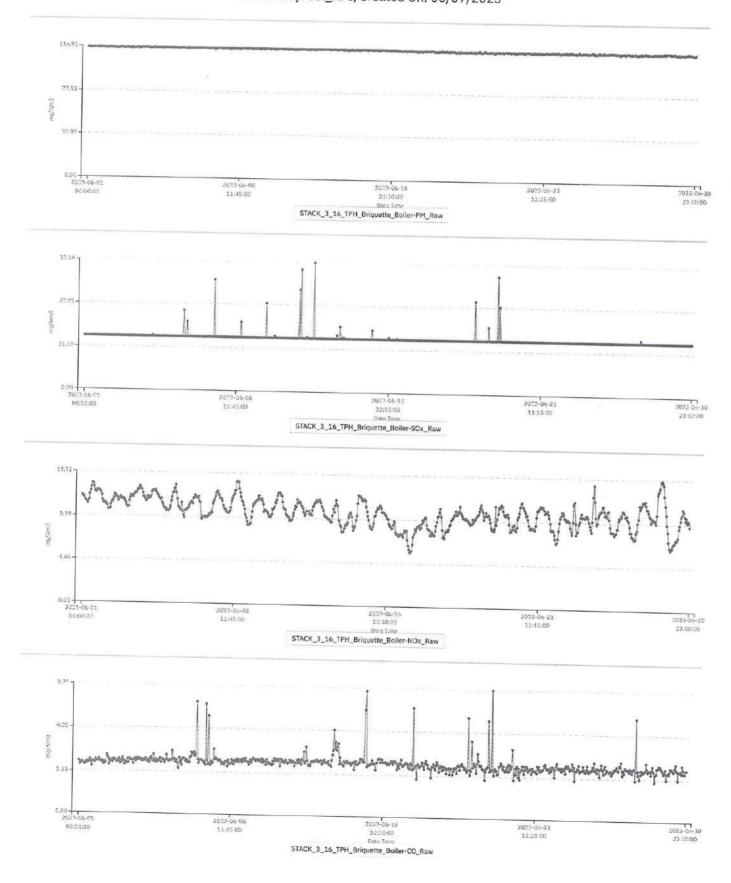
YOKOGAWA Yokogawa Inda Lid

#### **Custom Report**





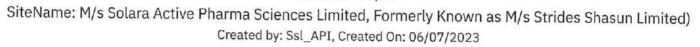
05 07 2022 10-4

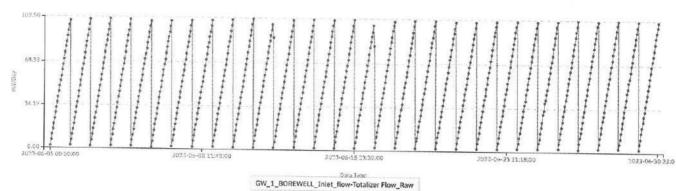

mtps://yncioua.ynrc.ne

YOKOGAWA Yokogawa india Lidi

ireiox

## **Custom Report**


## SiteName: M/s Solara Active Pharma Sciences Limited, Formerly Known as M/s Strides Snasun Limited) Created by: Ssl_API, Created On: 06/07/2023




**nF**1



## **Custom Report**







Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014, India Tel: +91 413 2654100.

07.06.2023

То

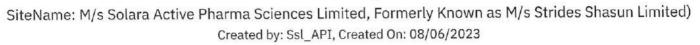
The Member Secretary, Pondicherry Pollution Control Committee, Puducherry-605 005

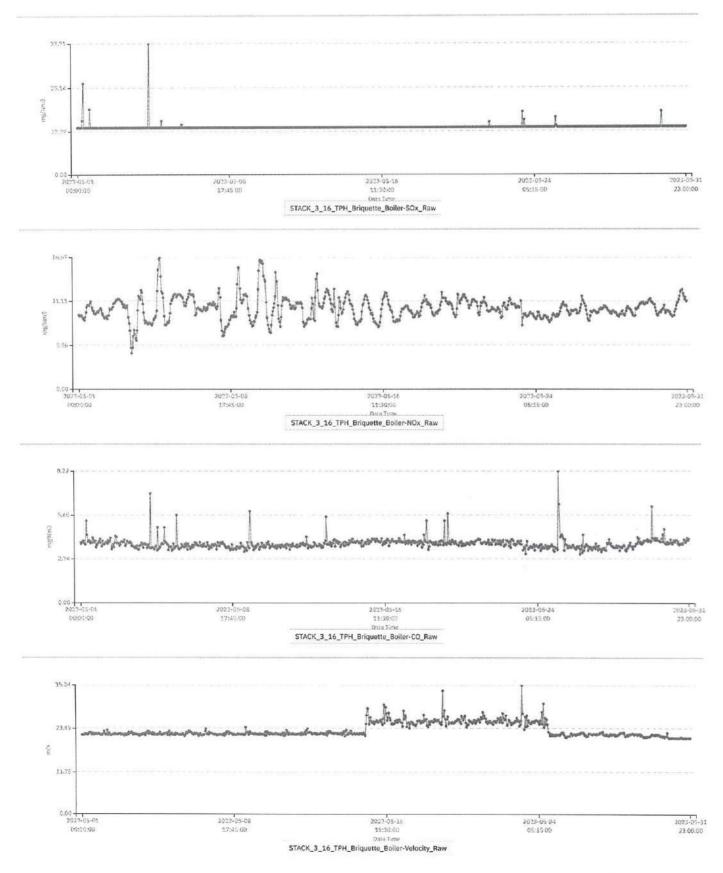
Respected Sir, Sub: Submission Of Online Monitoring Report - Reg.

Please find the enclosed copy of Online Monitoring Report for the month of May-2023.

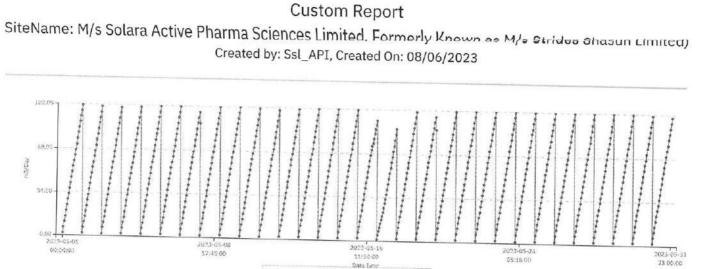
Please acknowledge the same

Thanking you,


Yours faithfully, For Solara active pharma sciences Limited.,

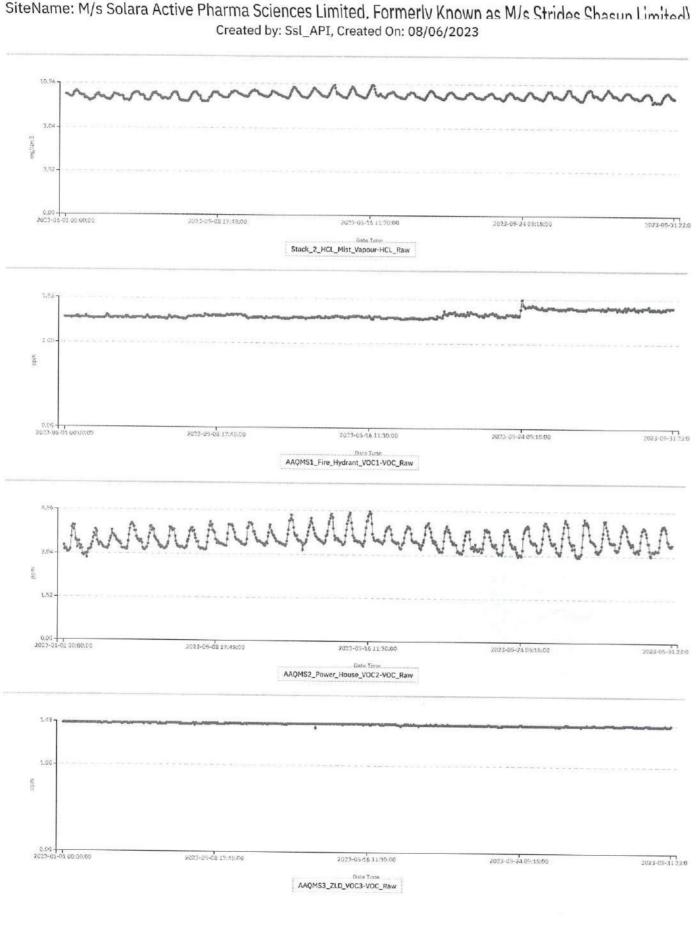

Chief operations Officer






## **Custom Report**










GW_1_BOREWELL_Inlet_flow-Totalizer Flow_Raw





# SiteName: M/s Solara Active Pharma Sciences Limited. Formerly Known as M/s Strides Shasun Limited)

**Custom Report** 

NO NE 2022 1.4-1



Communication Address : Solara Active Pharma Sciences Limited R.S.No. 33 & 34, Mathur Road, Periyakalapet Puducherry - 605 014. India Tel: +91 413 2654100.

08.05.2023

То

The Member Secretary, Pondicherry Pollution Control Committee, Puducherry-605 005

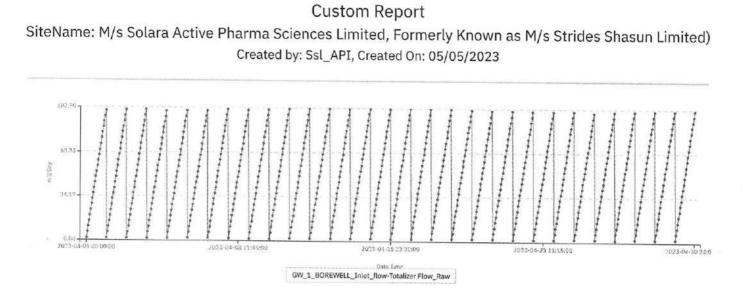
Respected Sir, Sub: Submission Of Online Monitoring Report - Reg.

Please find the enclosed copy of Online Monitoring Report for the month of April-2023.

Please acknowledge the same

Thanking you,

Yours faithfully, For Solara active pharma sciences Limited.


Chief Operati Officer ons



mtps://yiicioua.yiirc.ne

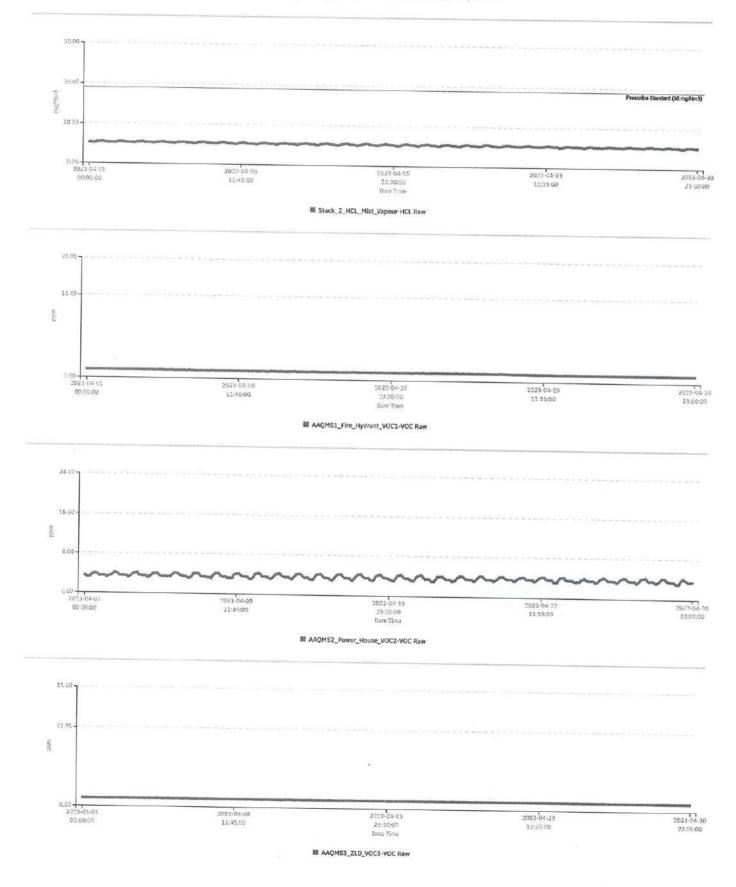
YOKOGAWA Yologawa india Lud

neiox





## SiteName: M/s Solara Active Pharma Sciences Limited, Formerly Known as M/s Strides Shasun Limited) Created by: Ssl_API, Created On: 09/05/2023 61.34 40.1 ng/kan? nn x 0.00-01.00:00:00 2023-03-16 05:49:00 2023-03-31 11:30:00 2023-04-15 12:15:00 2023-04-30 23:0 Date Tors STACK_3_16_TPH_Briquette_Boiler-SOx_Raw 13.04 MAYW M 8.69 EAN/Su 1.35 0.00-2013-01-16 05:45:00 2023-03-31 11:30:00 2023-04-15 17:15:00 2023-04-30 23:0 Data Turse STACK_3_16_TPH_Briquette_Boiler-NOx_Raw 11.38 7.55 CHN/Ba 11. -0.00 2023-03-01.00:00:00 2023-03-16 05:45:00 2023-03-51 11:30:00 2023-04-15 17:15:00 2023-04-30-23:0 Date Time STACK_3_16_TPH_Briquette_Boiler-CO_Raw 23.23 15.48 11/5 2 2.24 0.00 2023-03-01 00:00:00 2023-03-06 05:45:00 2023-03-31 11:30:00 2023-04-15 17:15:00 2623-04-30 23:0 Dater Tarse STACK_3_16_TPH_Briquette_Boiler-Velocity_Raw


## **Custom Report**



÷,

## **Custom Report**

## SiteName: M/s Solara Active Pharma Sciences Limited, Formerly Known as M/s Strides Shasun Limited) Created by: Ssl_API, Created On: 05/05/2023

